Home
Class 12
MATHS
If x=int(0)^(t^(2))e^(sqrt(z)){(2tan sqr...

If `x=int_(0)^(t^(2))e^(sqrt(z)){(2tan sqrt(z)+1-tan^(2)sqrt(z))/(2sqrt(z)sec^(2)sqrt(z))}dz` and `x=int_(0)^(t^(2))e^(sqrt(z)){(1-tan^(2)sqrt(z)-2tan sqrt(z))/(2sqrt(z)sec^(2)sqrt(z))}dz` : Then the inclination of the tangent to the curve at `t=(pi)/(4)` is :

A

`(pi)/(4)`

B

`(pi)/(3)`

C

`(pi)/(2)`

D

`(3pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the inclination of the tangent to the curve at \( t = \frac{\pi}{4} \). We are given two integrals for \( x \) and \( y \): 1. \( x = \int_{0}^{t^2} e^{\sqrt{z}} \frac{(2 \tan \sqrt{z} + 1 - \tan^2 \sqrt{z})}{(2 \sqrt{z} \sec^2 \sqrt{z})} \, dz \) 2. \( y = \int_{0}^{t^2} e^{\sqrt{z}} \frac{(1 - \tan^2 \sqrt{z} - 2 \tan \sqrt{z})}{(2 \sqrt{z} \sec^2 \sqrt{z})} \, dz \) ### Step 1: Differentiate \( x \) and \( y \) with respect to \( t \) Using the Leibniz rule for differentiation under the integral sign: \[ \frac{dx}{dt} = \frac{d}{dt} \int_{0}^{t^2} f(z) \, dz = f(t^2) \cdot \frac{d(t^2)}{dt} - f(0) \cdot \frac{d(0)}{dt} \] Since \( f(0) \) will contribute 0, we have: \[ \frac{dx}{dt} = f(t^2) \cdot 2t \] Where \( f(z) = e^{\sqrt{z}} \frac{(2 \tan \sqrt{z} + 1 - \tan^2 \sqrt{z})}{(2 \sqrt{z} \sec^2 \sqrt{z})} \). ### Step 2: Evaluate \( f(t^2) \) Substituting \( z = t^2 \): \[ f(t^2) = e^{t} \frac{(2 \tan t + 1 - \tan^2 t)}{(2t \sec^2 t)} \] Thus, \[ \frac{dx}{dt} = e^{t} \frac{(2 \tan t + 1 - \tan^2 t)}{(2t \sec^2 t)} \cdot 2t = e^{t} (2 \tan t + 1 - \tan^2 t) \cdot \frac{1}{\sec^2 t} \] ### Step 3: Differentiate \( y \) Similarly, for \( y \): \[ \frac{dy}{dt} = g(t^2) \cdot 2t \] Where \( g(z) = e^{\sqrt{z}} \frac{(1 - \tan^2 \sqrt{z} - 2 \tan \sqrt{z})}{(2 \sqrt{z} \sec^2 \sqrt{z})} \). Thus, \[ \frac{dy}{dt} = e^{t} \frac{(1 - \tan^2 t - 2 \tan t)}{(2t \sec^2 t)} \cdot 2t = e^{t} (1 - \tan^2 t - 2 \tan t) \cdot \frac{1}{\sec^2 t} \] ### Step 4: Find \( \frac{dy}{dx} \) Now, we can find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{e^{t} (1 - \tan^2 t - 2 \tan t) \cdot \frac{1}{\sec^2 t}}{e^{t} (2 \tan t + 1 - \tan^2 t) \cdot \frac{1}{\sec^2 t}} = \frac{1 - \tan^2 t - 2 \tan t}{2 \tan t + 1 - \tan^2 t} \] ### Step 5: Evaluate at \( t = \frac{\pi}{4} \) At \( t = \frac{\pi}{4} \): \[ \tan \frac{\pi}{4} = 1 \] Substituting \( t = \frac{\pi}{4} \): \[ \frac{dy}{dx} = \frac{1 - 1 - 2 \cdot 1}{2 \cdot 1 + 1 - 1} = \frac{-2}{2} = -1 \] ### Step 6: Find the angle of inclination The angle \( \theta \) of the tangent line with respect to the x-axis is given by: \[ \tan \theta = \frac{dy}{dx} = -1 \] Thus, \[ \theta = \tan^{-1}(-1) = \frac{3\pi}{4} \] ### Conclusion The inclination of the tangent to the curve at \( t = \frac{\pi}{4} \) is: \[ \theta = \frac{3\pi}{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve l=int_(cos^(4)t)^(-sin^(4)t)(sqrt(f(z))dz)/(sqrt(f(cos 2 t -z))+sqrt(f(z)))

If z(2-i2sqrt(3))^(2)=i(sqrt(3)+i)^(4), then amplitude of z is

If e^(x)=(sqrt(1+z)-sqrt(1-z))/(sqrt(1+z)+sqrt(1-z)) and tan (y/2)=sqrt((1-z)/(1+z)) then the value of (dy)/(dx) at z=1 is equal to to

Prove that : tan^(-1) [ (sqrt(1+z) +sqrt(1-z))/(sqrt(1+z) -sqrt(1-z))] = pi/4 +1/2 cos^(-1) z

If log sqrt(3)((|z|^(2)-|z|+1)/(2+|z|))gt2 , then the locus of z is

If z(2-2sqrt(3i))^(2)=i(sqrt(3)+i)^(4), then arg(z)=

If x=int_(c^(2))^(tan t)tan^(-1)z dz, y= int_(n)^(sqrt(t))(cos(z^(2)))/(z)dx then (dy)/(dx) is equal to : (where c and n are constants) :

int_ (0) ^ ((pi) / (3)) (dz) / (sqrt (e ^ (z)))

If z=ilog_(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to