Home
Class 12
MATHS
If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+(...

If `(1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+(1)/(4^(2))+……+ oo=(pi^(2))/(6)` and `int_(0)^(1)(ln (l+x))/(x)dx=(3pi^(2))/(k)` then k equals :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \[ I = \int_0^1 \frac{\ln(1+x)}{x} \, dx \] and relate it to the given series sum and the expression \( \frac{3\pi^2}{k} \). ### Step 1: Rewrite the Integral We can rewrite the integral using the series expansion of \( \ln(1+x) \): \[ \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots \] Thus, we have: \[ I = \int_0^1 \frac{\ln(1+x)}{x} \, dx = \int_0^1 \left(1 - \frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \ldots \right) \, dx \] ### Step 2: Integrate Term by Term Now we can integrate term by term: \[ I = \int_0^1 1 \, dx - \frac{1}{2} \int_0^1 x \, dx + \frac{1}{3} \int_0^1 x^2 \, dx - \frac{1}{4} \int_0^1 x^3 \, dx + \ldots \] Calculating these integrals: \[ \int_0^1 x^n \, dx = \frac{1}{n+1} \] So we have: \[ I = 1 - \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{3} - \frac{1}{4} \cdot \frac{1}{4} + \ldots \] This simplifies to: \[ I = 1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \ldots \] ### Step 3: Recognize the Series The series \( 1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \ldots \) can be expressed as: \[ \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} \] This series converges to \( \frac{\pi^2}{12} \). ### Step 4: Relate to Given Expression We have found that: \[ I = \frac{\pi^2}{12} \] According to the problem, we have: \[ I = \frac{3\pi^2}{k} \] Setting these equal gives: \[ \frac{\pi^2}{12} = \frac{3\pi^2}{k} \] ### Step 5: Solve for \( k \) To find \( k \), we can cross-multiply: \[ k \cdot \frac{\pi^2}{12} = 3\pi^2 \] Dividing both sides by \( \pi^2 \) (assuming \( \pi^2 \neq 0 \)): \[ \frac{k}{12} = 3 \] Thus, \[ k = 36 \] ### Final Answer The value of \( k \) is: \[ \boxed{36} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo)(1)/(n^(2))=(pi^(2))/(6) and int_(0)^(1)(ln x)/(1-x^(2))dx=-(pi^(2))/(lambda)

If (1)/(1^(2))+(2)/(2^(2))+(3)/(3^(2))+...oo=(pi^(2))/(6) implies (1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))+...oo=(pi^(2))/(k) then k=

int_(0)^(1)(log|1+x|)/(1+x^(2))dx=(pi)/(8)log2

If int_(log2)^(x) (1)/(sqrt(e^(x)-1))dx=(pi)/(6) then x is equal to

int_(0)^(pi//2)(1)/(1+tan^(3)x)dx=

the integral int_(0)^((1)/(2))(ln(1+2x))/(1+4x^(2))dx equals

7(int_(0)^(1)(x^(4)(1-x)^(4)dx)/(1+x^(2))+pi) is equal to

int_(a=)^(oo)ln(x+(1)/(x))(dx)/(1+x^(2))dx=(pi)/(2)ln a then

If int_0^(1/2)(x^2)/(1-x^2)^(3/2)dx=k/6 , then k=