Home
Class 12
MATHS
The value of lim(n to oo){(1)/(n^(4))(s...

The value of `lim_(n to oo){(1)/(n^(4))(sum_(k=1)^(n)k^(2)int_(k)^(k+1)x ln[(x-k)(k+1-x)]dx)}`is negative inverse of

Text Solution

Verified by Experts

The correct Answer is:
`0.5`
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(k =1)^(n) k(1 + 1/n)^(k -1) =

The value of lim _( x to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

Find the value of lim_(n rarr oo)sum_(k=1)^(n)((k)/(n^(2)+k))

The value of int_(0)^(1)(pi_(r=1)^(n)(x+r))(sum_(k=1)^(n)(1)/(x+k))dx

The value of int_(0)^(1)lim_(n rarr oo)sum_(k=0)^(n)(x^(k+2)2^(k))/(k!)dx is:

The value of lim_(n rarr oo)sum_(k=1)^(n)log(1+(k)/(n))^((1)/(n)) ,is

The value of Lim_(n rarr oo)sum_(k=1)^(n)(n-k)/(n^(2))cos((4k)/n) equals

Evaluate: lim_ (n rarr oo) (1) / (n ^ (2)) sum_ (k = 0) ^ (n-1) [k int_ (k) ^ (k + 1) sqrt ((xk) (k + 1-x)) dx]

lim_ (n rarr oo) sum_ (k = 1) ^ (n) (k ^ (2)) / (2 ^ (k))