Home
Class 12
MATHS
The integral int(0)^(pi)sqrt(1+4"sin"^2...

The integral `int_(0)^(pi)sqrt(1+4"sin"^2(x)/(2)-4"sin"(x)/(2))` dx is equal to

A

`pi-4`

B

`(2pi)/(3)-4-4sqrt(3)`

C

`4sqrt(3)-4`

D

`4sqrt(3)-4-pi//3`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int_(pi)^(0)sqrt(1+4"sin"^(2)(x)/(2)-4 "sin"(x)/(2))dx equals ,

int_(0)^( pi)sqrt(1+4sin^(2)((x)/(2))-2sin((x)/(2)))dx

The integral int_(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx equals

The integral int_(0)^( pi)sqrt(1+4sin^(2)((x)/(2))-4sin((x)/(2))dx) equal (1)pi-4(2)(2 pi)/(3)-4-4sqrt(3)(3)4sqrt(3)-4(4)4sqrt(3)-4-(pi)/(3)

int_(0)^(2pi)sqrt(1+"sin"x/2)dx=

int_(0)^((pi)/(4))sqrt(1+sin2x)dx

int_(0)^(pi//4)sqrt((1-sin2x)/(1+sin 2x))dx=

int_(0)^( pi//2)sqrt((1-sin2x)/(1+sin2x))dx

The value of the definite integral int_(0)^(pi//2)sin x sin 2x sin 3x dx is equal to

The value of the definite integral int_(0)^((pi)/(2))((1+sin3x)/(1+2sin x))dx equals to