Home
Class 12
MATHS
Ifint(sinx)^1t^2f(t)dt=1=1-s inx ,w h e ...

`Ifint_(sinx)^1t^2f(t)dt=1=1-s inx ,w h e r ex in (0,pi/2),` then find the value of `f(1/(sqrt(3)))dot`

A

3

B

`sqrt(3)`

C

`1//3`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Ifint_(sin x)^(1)t^(2)f(t)dt=1-sin x, wherex in(0,(pi)/(2)) then find the value of f((1)/(sqrt(3)))

If int_(sinx)^(1)t^(2)f(t)dt=1-sinx, xepsilon(0,(pi)/2) then find the value of f(1/(sqrt(3)))

If int_(cos x)^(1)t^(2)f(t)dt=1-cos x AA x in(0,(pi)/(2)) then the value of [f((sqrt(3))/(4))] is

If int_(sinx)^1 t^2f(t)dt=1-sinx , then the value of f(1/sqrt(3)) is (A) 1/sqrt(3) (B) 1/3 (C) sqrt(3) (D) 3

If int_(sinx)^(1) t^(2)f(t)dt=1-sinx " for all " x in [0,pi//2] , then f((1)/(sqrt(3)))=

f(x)=int_(1)^(x)(tan^(-1)(t))/(t)dt,x in R^(+), then find the value of f(e^(2))-f((1)/(e^(2)))

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

For x>0, let f(x)=int_(1)^(x)(log t)/(1+t)dt. Find the function f(x)+f((1)/(x)) and find the value of f(e)+f((1)/(e))