Home
Class 12
MATHS
The value of int(0)^(pi)|cos x|^(3)dx is...

The value of `int_(0)^(pi)|cos x|^(3)dx` is :

A

0

B

`-(4)/(3)`

C

`(4)/(3)`

D

`(2)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} |\cos x|^3 \, dx \), we first need to analyze the behavior of the function \( |\cos x| \) over the interval from \( 0 \) to \( \pi \). ### Step 1: Break the integral into two parts The function \( \cos x \) is positive in the interval \( [0, \frac{\pi}{2}] \) and negative in the interval \( [\frac{\pi}{2}, \pi] \). Therefore, we can break the integral as follows: \[ I = \int_{0}^{\frac{\pi}{2}} \cos^3 x \, dx + \int_{\frac{\pi}{2}}^{\pi} (-\cos x)^3 \, dx \] Since \( (-\cos x)^3 = -\cos^3 x \), we can rewrite the second integral: \[ I = \int_{0}^{\frac{\pi}{2}} \cos^3 x \, dx - \int_{\frac{\pi}{2}}^{\pi} \cos^3 x \, dx \] ### Step 2: Change the limits of the second integral To evaluate the second integral, we can change the variable. Let \( u = \pi - x \). Then \( du = -dx \), and when \( x = \frac{\pi}{2} \), \( u = \frac{\pi}{2} \) and when \( x = \pi \), \( u = 0 \). Thus, the integral becomes: \[ \int_{\frac{\pi}{2}}^{\pi} \cos^3 x \, dx = \int_{\frac{\pi}{2}}^{0} \cos^3(\pi - u)(-du) = \int_{0}^{\frac{\pi}{2}} (-\cos u)^3 \, du = -\int_{0}^{\frac{\pi}{2}} \cos^3 u \, du \] So we have: \[ I = \int_{0}^{\frac{\pi}{2}} \cos^3 x \, dx - (-\int_{0}^{\frac{\pi}{2}} \cos^3 x \, dx) = 2\int_{0}^{\frac{\pi}{2}} \cos^3 x \, dx \] ### Step 3: Evaluate the integral \( \int_{0}^{\frac{\pi}{2}} \cos^3 x \, dx \) To evaluate \( \int \cos^3 x \, dx \), we can use the identity: \[ \cos^3 x = \cos x (1 - \sin^2 x) = \cos x - \cos x \sin^2 x \] Thus, \[ \int \cos^3 x \, dx = \int \cos x \, dx - \int \cos x \sin^2 x \, dx \] The first integral is straightforward: \[ \int \cos x \, dx = \sin x \] For the second integral, we can use the substitution \( u = \sin x \), \( du = \cos x \, dx \): \[ \int \cos x \sin^2 x \, dx = \int u^2 \, du = \frac{u^3}{3} = \frac{\sin^3 x}{3} \] Thus, \[ \int \cos^3 x \, dx = \sin x - \frac{\sin^3 x}{3} \] Now, we evaluate this from \( 0 \) to \( \frac{\pi}{2} \): \[ \int_{0}^{\frac{\pi}{2}} \cos^3 x \, dx = \left[ \sin x - \frac{\sin^3 x}{3} \right]_{0}^{\frac{\pi}{2}} = \left( 1 - \frac{1}{3} \right) - \left( 0 - 0 \right) = 1 - \frac{1}{3} = \frac{2}{3} \] ### Step 4: Calculate the final value of \( I \) Now substituting back into our expression for \( I \): \[ I = 2 \int_{0}^{\frac{\pi}{2}} \cos^3 x \, dx = 2 \cdot \frac{2}{3} = \frac{4}{3} \] ### Final Answer Thus, the value of the integral \( \int_{0}^{\pi} |\cos x|^3 \, dx \) is: \[ \boxed{\frac{4}{3}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^( pi)|cos x|dx

int_(0)^( pi)|cos x|dx

The value of int_(0)^(pi) |cos x|dx , is

The value of int_(0)^(pi) x sin^(3) x dx is

The value of int_(0)^(2pi)cos^(99)x dx is

The value of int_(0)^(2pi)cos^(5)x dx , is

int_(0)^(2 pi)|cos x|dx

int_(0)^( pi)|cos x|dx=2