Home
Class 12
MATHS
The value of int(0)^(2pi)[sin 2x(1+cos 3...

The value of `int_(0)^(2pi)[sin 2x(1+cos 3x)]dx`, where [t] denotes the greatest integer function, is:

A

`-pi`

B

`2pi`

C

`pi`

D

`-2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{2\pi} \sin(2x)(1 + \cos(3x)) \, dx \), we will follow these steps: ### Step 1: Write the integral We start with the integral: \[ I = \int_{0}^{2\pi} \sin(2x)(1 + \cos(3x)) \, dx \] ### Step 2: Split the integral We can split the integral into two parts: \[ I = \int_{0}^{2\pi} \sin(2x) \, dx + \int_{0}^{2\pi} \sin(2x) \cos(3x) \, dx \] ### Step 3: Evaluate the first integral The first integral is: \[ \int_{0}^{2\pi} \sin(2x) \, dx \] The integral of \(\sin(2x)\) over one complete period (from \(0\) to \(2\pi\)) is zero: \[ \int_{0}^{2\pi} \sin(2x) \, dx = 0 \] ### Step 4: Evaluate the second integral Now we focus on the second integral: \[ \int_{0}^{2\pi} \sin(2x) \cos(3x) \, dx \] We can use the product-to-sum identities: \[ \sin(A) \cos(B) = \frac{1}{2} [\sin(A + B) + \sin(A - B)] \] Applying this gives: \[ \sin(2x) \cos(3x) = \frac{1}{2} [\sin(5x) + \sin(-x)] = \frac{1}{2} [\sin(5x) - \sin(x)] \] Thus, we have: \[ \int_{0}^{2\pi} \sin(2x) \cos(3x) \, dx = \frac{1}{2} \left( \int_{0}^{2\pi} \sin(5x) \, dx - \int_{0}^{2\pi} \sin(x) \, dx \right) \] ### Step 5: Evaluate the integrals Both integrals \(\int_{0}^{2\pi} \sin(5x) \, dx\) and \(\int_{0}^{2\pi} \sin(x) \, dx\) are also zero: \[ \int_{0}^{2\pi} \sin(5x) \, dx = 0 \] \[ \int_{0}^{2\pi} \sin(x) \, dx = 0 \] ### Step 6: Combine results Thus, the second integral evaluates to: \[ \int_{0}^{2\pi} \sin(2x) \cos(3x) \, dx = \frac{1}{2} (0 - 0) = 0 \] ### Step 7: Final result Combining both parts, we have: \[ I = 0 + 0 = 0 \] ### Step 8: Apply the greatest integer function Since the value of \(I\) is \(0\), applying the greatest integer function gives: \[ \lfloor I \rfloor = \lfloor 0 \rfloor = 0 \] ### Conclusion The final answer is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2pi)[sin2x(1+cos3x)] dx, where [t] denotes

Value of int_(0)^(2 pi)[sin2x(1+cos3x)]dx (where [.] denotes greatest integer fucntion)

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

Evaluate: int_(0)^(2 pi)[sin x]dx, where [.] denotes the greatest integer function.

The value of int_(-2)^(1)[x[1+cos((pi x)/(2))]+1]dx where [.] denotes the greatest integer function,is 1 (b) 1/2 (c) 2 (d) none of these

The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by:

The value of int_(0)^((pi)/(3))[sqrt(3)tan x]dx( where [.] denotes the greatest integer function.) is:

The value of int_(pi)^(2pi) [ 2 sin x] dx, where [] repreents the greatest integer function, is

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to