Home
Class 12
MATHS
For every function f (x) which is twice ...

For every function f (x) which is twice differentiable , these will be good approximation of
`int_(a)^(b)f(x)dx=((b-a)/(2)){f(a)+f(b)}`, for more acutare results for ` cin(a,b),F( c) = (c-a)/(2)[f(a)-f( c)]+(b-c)/(2)[f(b)-f( c)]`
When ` c= (a+b)/(2)`
`int_(a)^(b)f(x)dx=(b-a)/(4){f(a)+f (b)+2 f ( c) }dx`
If `underset(t toa)lim(int_(a)^(t)f(x)dx-((t-a))/(2){f(t)+f(a)})/((t-a)^(3))=0`, then degree of polynomial function f (x) atmost is

A

0

B

1

C

3

D

2

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

For every function f (x) which is twice differentiable , these will be good approximation of int_(a)^(b)f(x)dx=((b-a)/(2)){f(a)+f(b)} , for more acutare results for cin(a,b),F( c) = (c-a)/(2)[f(a)-f( c)]+(b-c)/(2)[f(b)-f( c)] When c= (a+b)/(2) int_(a)^(b)f(x)dx=(b-a)/(4){f(a)+f (b)+2 f ( c) }dx If lim_(t toa) (int_(a)^(t)f(x)dx-((t-a))/(2){f(t)+f(a)})/((t-a)^(3))=0 , then degree of polynomial function f (x) atmost is

For every function f (x) which is twice differentiable , these will be good approximation of int_(a)^(b)f(x)dx=((b-a)/(2)){f(a)+f(b)} , for more acutare results for cin(a,b),F( c) = (c-a)/(2)[f(a)-f( c)]+(b-c)/(2)[f(b)-f( c)] When c= (a+b)/(2) int_(a)^(b)f(x)dx=(b-a)/(4){f(a)+f (b)+2 f ( c) }dx Good approximation of int_(0)^(pi//2)sinx dx , is

int_(a + c)^(b+c) f(x)dx=

int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=

Suppose we define the definite integral using the following formula int_a^b f(x)dx=(b-c)/2(f(a)+f(b)) , for more accurate result for c in (a, b)F(c)=(b-c)/2 (f(a)-f(c))+(b-c)/2 (f(b)-f(c)). When c = (a+b)/2, int_a^b f(x) dx=(b-a)/4(f(a)+f(b)+f(2f(c)) then int_0 ^(pi/2) sinxdx

If f(x)=x^(3) show that int_(a)^(b)f(x)dx=(b-a)/(6){f(a)+4f((a+b)/(2))+f(b)}

Suppose we define the definite integral using the following formula int_a^b f(x)dx=(b-a)/2 (f(a)+f(b)) , for more accurate result for c in (a,b), F(c)=(c-a)/2 (f(a)+f(c))+(b-c)/2(f(b)+f(c)) and when c=(a+b)/2, int_a^b f(x)dx=(b-a)/4(f(a)+f(b)+2f(c)) In the above comprehension, if f(x) is a polynomial and lim_(trarra) (int_a^t f(x)dx-(t-a)/2 [f(t)+f(a)])/(t-a)^3=0 for all a then the degree of f(x) can at most be (A) 1 (B) 2 (C) 3 (D) 4