Home
Class 12
MATHS
Let (d)/(dx) F(x)=(e^(sin x))/(x), x gt...

Let `(d)/(dx) F(x)=(e^(sin x))/(x), x gt 0`,
If `int_(1)^(4) (3)/(x) e^(sin x^(3))dx=F(k)-F(1)`, then one of the possible value of k is -

Text Solution

Verified by Experts

The correct Answer is:
k = 16
Promotional Banner

Similar Questions

Explore conceptually related problems

Let (d)/(dx)F(x)=((e^( sin x))/(x)),x>0. If int_(1)^(4)(3)/(x)e^(sin(x^(3)))dx=F(k)-F(1), then one of the possible values of k, is: (a)15 (b) 16(cc)63 (d) 64

Let (d)/(dx)(F(x))=(e^(sin x))/(x),x>0. If int_(1)^(4)2(e^(sin(x^(2))))/(x)dx=F(k)-F(1), then possible value of k is:

int[(d)/(dx)f(x)]dx=

If (d)/(dx)f(x)=g(x) for a le x le b then, int_(a)^(b) f(x) g(x) dx equals

Theorem: (d)/(dx)(int f(x)dx=f(x)

if (d)/(dx)f(x)=g(x), find the value of int_(a)^(b)f(x)g(x)dx

If (d)/(dx)f(x)=g(x), then int f(x)g(x)dx is equal to: