Home
Class 12
MATHS
The value of int(1)^(e^(37))(pi sin(pi ...

The value of `int_(1)^(e^(37))(pi sin(pi log x))/(x)dx` is ………….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{1}^{e^{37}} \frac{\pi \sin(\pi \log x)}{x} \, dx \), we will use a substitution method. ### Step 1: Substitution Let \( t = \pi \log x \). Then, we differentiate \( t \) with respect to \( x \): \[ dt = \frac{\pi}{x} \, dx \quad \Rightarrow \quad dx = \frac{x}{\pi} \, dt \] Since \( x = e^{t/\pi} \), we can substitute \( dx \) in terms of \( t \): \[ dx = \frac{e^{t/\pi}}{\pi} \, dt \] ### Step 2: Change the limits of integration When \( x = 1 \): \[ t = \pi \log(1) = 0 \] When \( x = e^{37} \): \[ t = \pi \log(e^{37}) = 37\pi \] Thus, the limits change from \( x = 1 \) to \( x = e^{37} \) to \( t = 0 \) to \( t = 37\pi \). ### Step 3: Substitute in the integral Now substitute \( t \) and \( dx \) into the integral: \[ I = \int_{0}^{37\pi} \frac{\pi \sin(t)}{e^{t/\pi}} \cdot \frac{e^{t/\pi}}{\pi} \, dt \] This simplifies to: \[ I = \int_{0}^{37\pi} \sin(t) \, dt \] ### Step 4: Evaluate the integral The integral of \( \sin(t) \) is: \[ \int \sin(t) \, dt = -\cos(t) \] Thus, \[ I = \left[-\cos(t)\right]_{0}^{37\pi} = -\cos(37\pi) + \cos(0) \] Since \( \cos(0) = 1 \) and \( \cos(37\pi) = -1 \) (because \( 37\pi \) is an odd multiple of \( \pi \)): \[ I = -(-1) + 1 = 1 + 1 = 2 \] ### Final Answer The value of the integral is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(1)^(e^(37) ) ( sin ( pi log x) )/( x) dx is (pi= 3.14)

The value of int_(1)^(e^(37))(pi sin(pi In x))/(x)dx is 2(b)4(c)e^(2t) (d) e^(37)

int_(1)^(e^(99))(sin(pi.ln x))/(x)dx=

The value of int_1^(e^(37))(pi"sin"(piI nx))/x dx is 2 b. 4 c. e^(27) d. e^(37)

The value of int_(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx , is

The value of int_(0)^(pi//2) (2log sin x-log sin 2x)dx , is

Find the value of int_(-1)^(2)|x sin pi x|dx

The value of int_(0)^((pi)/(2))log[(3+5cos x)/(3+5sin x)]dx is