Home
Class 12
MATHS
For n gt 0 int(0)^(2pi)(x sin^(2n)x)/(si...

For `n gt 0 int_(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx=` ….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{2\pi} \frac{x \sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx, \] we can utilize a symmetry property of definite integrals. ### Step 1: Use the property of definite integrals We know that: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx. \] In our case, we set \( a = 2\pi \), so we have: \[ I = \int_{0}^{2\pi} \frac{(2\pi - x) \sin^{2n} (2\pi - x)}{\sin^{2n} (2\pi - x) + \cos^{2n} (2\pi - x)} \, dx. \] ### Step 2: Simplify the expression Using the periodic properties of sine and cosine, we know: \[ \sin(2\pi - x) = -\sin(x) \quad \text{and} \quad \cos(2\pi - x) = \cos(x). \] Thus, we can rewrite the integral as: \[ I = \int_{0}^{2\pi} \frac{(2\pi - x) \sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx. \] ### Step 3: Combine the two expressions for I Now we have two expressions for \( I \): 1. \( I = \int_{0}^{2\pi} \frac{x \sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx \) 2. \( I = \int_{0}^{2\pi} \frac{(2\pi - x) \sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx \) Adding these two equations gives: \[ 2I = \int_{0}^{2\pi} \frac{x \sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx + \int_{0}^{2\pi} \frac{(2\pi - x) \sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx. \] ### Step 4: Simplify the sum Combining the integrands: \[ 2I = \int_{0}^{2\pi} \frac{(x + (2\pi - x)) \sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx = \int_{0}^{2\pi} \frac{2\pi \sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx. \] ### Step 5: Solve for I Thus, we have: \[ 2I = 2\pi \int_{0}^{2\pi} \frac{\sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx. \] Dividing both sides by 2 gives: \[ I = \pi \int_{0}^{2\pi} \frac{\sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx. \] ### Step 6: Evaluate the integral By the symmetry of sine and cosine, we can also find: \[ \int_{0}^{2\pi} \frac{\cos^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx = \int_{0}^{2\pi} \frac{\sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx. \] Let \( J = \int_{0}^{2\pi} \frac{\sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx \), then: \[ I = \pi J. \] Since \( J + J = 2J = 2\pi \), we find that: \[ J = \pi. \] Thus, substituting back, we find: \[ I = \pi^2. \] ### Final Answer The value of the integral is \[ \boxed{\pi^2}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(sin^(n)x)/((sin^(n)x+cos^(n)x))dx=?

int_(0)^(pi//2)(sin 2x)/(2+2sin^(2)x+cos^(2)x)dx=

Prove that: int_(0)^(2 pi)(x sin^(2n)x)/(sin^(2n)+cos^(2n)x)dx=pi^(2)

Len N be set of natural numbers. For n in N defiine I_(n)=int_(0)^(pi) (x sin^(2n)(x))/(sin^(2n)(x)+cos^(2n)(x)) dx . Then for m,n in N

Evaluate int_(0)^(2pi)(xcos^(2n)x)/(cos^(2n)x+sin^(2n)x)dx

int_(0)^(2pi) (xsin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx,n gt 0 , is equal to

int_(-pi//2)^(pi//2)(sin^(2n-1)x)/(1+cos^(2n)x)dx=

Evaluate the following integrals: (1-35)pi/2int_(0)^( pi/2)(sin^(n)x)/(sin^(n)+cos^(n)x)dx