Home
Class 12
MATHS
Evaluate int(0)^(pi)(x dx)/(1+cos alpha ...

Evaluate `int_(0)^(pi)(x dx)/(1+cos alpha sin x)`,where `0lt alpha lt pi`.

Text Solution

Verified by Experts

The correct Answer is:
`I=(alpha pi)/(sin alpha)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate :int_(0)^( pi)(x)/(1+sin alpha sin x)dx

The value of the integral int_(0)^(pi) (xdx)/(1+cos alpha sinx), 0 lt alpha lt pi , is

int_(0)^( Evaluate: )(xdx)/(1+cos alpha sin x), where0

I= int_(0)^( pi)(x)/(1+sin x cos alpha)dx

int_(0)^( pi)(xdx)/(1+cos alpha*sin alpha)(0

The value of the integral int_(0)^(1)(dx)/(x^(2)+2xcosalpha+1) , where 0 lt alpha lt (pi)/(2) , is equal to :

The value of the integral int_(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltalpha lt pi is

Evaluate :int_(0)^((pi)/(2))(sin x+cos x)dx

Evaluate: int_(0)^((pi)/(2))|sin x-cos x|dx

int_ (0) ^ (pi) (xdx) / (1 + cos alpha * sin x) = (pi alpha) / (sin alpha), 0