Home
Class 12
MATHS
Evaluate int(0)^(1)(tx+1-x)^(n)dx, wh...

Evaluate `int_(0)^(1)(tx+1-x)^(n)dx`, where n is a positive integer and t is a parameter independent of x . Hence , show that

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(n+1)((t^(n+1)-1)/(t-1))`
Promotional Banner

Similar Questions

Explore conceptually related problems

evaluate int_(0)^(1)x^(2)(1-x)^(n)dx

Evaluate int _(0)^(1) x ( 1-x)^n dx

Solve (x-1)^(n)=x^(n), where n is a positive integer.

Evaluate int_(0)^(1)((log1)/(x))^(n-1)dx .

Find the value of int_(0)^(1)x(1-x)^(n)dx

Evaluate: int x(1-x)^(n)dx

Evaluate: int_0^1x(1-x)^n dx

Evaluate : int_( 0 )^n x - [ x ] dx

Evaluate int_(0)^(a)[x^(n)]dx, (where,[*] denotes the greatest integer function).