Home
Class 12
MATHS
If int(0)^(x)f(t)dt=x+int(x)^(1)f(t)dt,t...

If `int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt`,then the value of `f(1)` is

A

`(1)/(2)`

B

0

C

1

D

`-(1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is

f(x)=int_(0)^( pi)f(t)dt=x+int_(x)^(1)tf(t)dt, then the value of f(1) is (1)/(2)

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is

If int_(0)^(x)f(t)dt=x^(2)+int_(x)^(1)t^(2)f(t)dt, then f'((1)/(2)) is

f(x)=x^(3)+1-2x int_(0)^(x)g(t)dt and g(x)=x-int_(0)^(1)f(t)dt. Then yhe value of int_(0)^(1)f(t)dt lies in the interval

If f:R in R is continuous and differentiable function such that int_(-1)^(x) f(t)dt+f'''(3) int_(x)^(1) dt=int_(1)^(x) t^(3)dt-f'(1)int_(0)^(x) t^(2)dt+f'(2) int_(x)^(3) r dt , then the value of f'(4), is

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If f(x)=1+(1)/(x)int_(1)^(x)f(t)dt, then the value of (e^(-1)) is