Home
Class 12
MATHS
For x >0,l e tf(x)=int1^x((log)e t)/(...

For `x >0,l e tf(x)=int_1^x((log)_e t)/(1+t)dtdot` Find the function `f(x)+f(1/x)` and show that `f(e)+f(1/e)=1/2dot`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2)(ln x)^(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

For x>0, let f(x)=int_(1)^(x)(log_(e)t)/(1+t)dt find the function f(x)+f((1)/(x)) and show that f(e)+f((1)/(e))=(1)/(2)

For x>0, let f(x)=int_(1)^(x)(log_(t)t)/(1+t)dt. Find the function f(x)+f((1)/(x)) and show that f(e)+f((1)/(e))=(1)/(2)

For x>0, let f(x)=int_(1)^(x)(log t)/(1+t)dt. Find the function f(x)+f((1)/(x)) and find the value of f(e)+f((1)/(e))

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

f(x)=int_1^x lnt/(1+t) dt , f(e)+f(1/e)=

The range of the function f(x)=(e^(x)-1)/(e^(x)+1) is