Home
Class 12
MATHS
Investigate for the maxima and minima of...

Investigate for the maxima and minima of the function `f(x)=int_1^x[2(t-1)(t-2)^3+3(t-1)^2(t-2)^2]dt`

Text Solution

Verified by Experts

The correct Answer is:
f(x) attains maximum at x = 1 and f(x) attains minimum at `x=(7)/(5)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Investigate for the maxima and minima of the function _(x)f(x)=int_(1)^(x)[2(t-1)(t-2)^(3)+3(t-1)^(2)(t-2)^(2)]dt

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt

The number of critical points of the function f(x)=int_(0)^(x)e^(t)(t-1)(t-2)(t-3)dt

The range of the function f(x)=int_(1)^(x)|t|dt , x in[(-1)/(2),(1)/(2)] is

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt, then

Find the points of minima for f(x)=int_(0)^(x)t(t-1)(t-2)dt