Home
Class 12
MATHS
The solution of (x^2+x y)dy=(x^2+y^2)dx ...

The solution of `(x^2+x y)dy=(x^2+y^2)dx` is (a) `( b ) (c)logx=log(( d ) (e) x-y (f))+( g ) y/( h ) x (i) (j)+c (k)` (l) (m) `( n ) (o)logx=2log(( p ) (q) x-y (r))+( s ) y/( t ) x (u) (v)+c (w)` (x) (y) `( z ) (aa)logx=log(( b b ) (cc) x-y (dd))+( e e ) x/( f f ) y (gg) (hh)+c (ii)` (jj) (kk) None of these

A

`log x= log (x- y) +(y)/(x) + C `

B

`log x= 2 log ( x- y) +(y)/(x) +C`

C

`log x = log ( x- y) +(x)/(y) +C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of (x^2+xy)dy=(x^2+y^2)dx is (A) logx=log(x-y)+y/x+C (B) logx=2log(x-y)+y/x+C (C) logx=log(x-y)+x/y+C (D) none of these

If y= ( log sin x) (logx ) ,then (dy)/(dx)

If x log_(e) (log _(e) x) - x^(2) + y^(2) = 4 (y gt 0) , then (dy)/(dx) at x = e is equal to

If x^(y)=e^(x-y), show that (dy)/(dx)=(log x)/({log(xe)}^(2))

The solution of ((dy)/(dx))^(2)+(2x+y)(dy)/(dx)+2xy=0, is (i) (y+x^(2)-c_(1))(x+log y+y^(2)+c_(2))( (ii) (y+x^(2)-c_(1))(x-log y-c_(2))( iii) (y+x^(2)-c_(1))(x+log y-c_(2))( iv) (y+x^(2)-c_(1))(3x+log y-c_(2))

If y=a cos((log)_(e)x)+b sin((log)_(e)x), then x^(2)y_(2)+xy_(1)=(a)0(b)y(c)y(d) none of these

If y= (log x) ^(logx) ,then (dy)/(dx)=

If x^(y)=y^(x) then (dy)/(dx)= ... (A) (y(x log y-y))/(x(y log x-x)) (B) (y(y log x-x))/(x(x log y-y)) (C) (y^(2)(1-log x))/(x^(2)(1-log y)) (D) (y(1-log x))/(x(1-log y))

(dy)/(dx)=(y)/(x)-x/(y), where y=vx A) y^(2)=xlog((c)/(x)) B) y^(2)=4xlog((c)/(x)) C) y^(2)=2x^(2)log((c)/(x)) D) v^(2)=2clogv