Home
Class 12
MATHS
The solution x^2( dy )/( dx) = x^2 + x...

The solution ` x^2( dy )/( dx) = x^2 + xy + y^2` is :

A

`tan ^(-1)"" (y)/(x) = bg y+C`

B

` tan^(-1) "" (x)/(y) = log x +C `

C

` tan ^(-1)"" (x)/(y) = log + C`

D

` tan^(-1) "" (y)/(x) = log x+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( x^2 \frac{dy}{dx} = x^2 + xy + y^2 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ x^2 \frac{dy}{dx} = x^2 + xy + y^2 \] We can express \(\frac{dy}{dx}\) as: \[ \frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2} \] ### Step 2: Simplify the right-hand side Now, we can simplify the right-hand side: \[ \frac{dy}{dx} = 1 + \frac{y}{x} + \frac{y^2}{x^2} \] ### Step 3: Substitute \(y = vx\) Let \(y = vx\), where \(v\) is a function of \(x\). Then, we have: \[ \frac{dy}{dx} = v + x \frac{dv}{dx} \] Substituting this into our equation gives: \[ v + x \frac{dv}{dx} = 1 + v + v^2 \] ### Step 4: Simplify the equation We can cancel \(v\) from both sides: \[ x \frac{dv}{dx} = 1 + v^2 \] ### Step 5: Separate variables Now, we can separate the variables: \[ \frac{dv}{1 + v^2} = \frac{dx}{x} \] ### Step 6: Integrate both sides Integrating both sides: \[ \int \frac{dv}{1 + v^2} = \int \frac{dx}{x} \] The left side integrates to \(\tan^{-1}(v)\) and the right side integrates to \(\ln|x| + C\): \[ \tan^{-1}(v) = \ln|x| + C \] ### Step 7: Substitute back for \(v\) Since \(v = \frac{y}{x}\), we substitute back: \[ \tan^{-1}\left(\frac{y}{x}\right) = \ln|x| + C \] ### Final Step: Write the final solution Thus, the solution to the differential equation is: \[ \tan^{-1}\left(\frac{y}{x}\right) = \ln|x| + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of (dy)/(dx)=2xy-3y+2x-3 is

The solution of (dy)/(dx) = 1+ y + y^(2) + x+ xy + xy^(2) is

The general solution of the DE x ^(2) (dy)/(dx) = x ^(2) + xy + y ^(2) is

the solution of (dy)/(dx)(x^(2)y^(3)+xy)=1

The solution of the differential equation x^(2) (dy)/(dx)= x^(2) + xy + y^(2)