Home
Class 12
MATHS
The solution of the ( dy )/(dx) = (xy+y...

The solution of the `( dy )/(dx) = (xy+y)/(xy+x)`is :

A

`(1)/( x+y) = x^(2) + 1 + Ce ^(x)`

B

`(1) /(( x+y)^2)=x^2+1 + Ce^(x^2)`

C

`(1)/((x+y)^2) = X+1+ Ce ^(x)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \(\frac{dy}{dx} = \frac{xy + y}{xy + x}\), we will follow these steps: ### Step 1: Simplify the Equation We start with the given equation: \[ \frac{dy}{dx} = \frac{xy + y}{xy + x} \] We can factor out \(y\) from the numerator and \(x\) from the denominator: \[ \frac{dy}{dx} = \frac{y(x + 1)}{x(y + 1)} \] ### Step 2: Cross-Multiply Now, we cross-multiply to separate the variables: \[ (y + 1) dy = \frac{(x + 1)}{x} dx \] ### Step 3: Integrate Both Sides Next, we integrate both sides: \[ \int (y + 1) dy = \int \frac{(x + 1)}{x} dx \] The left side becomes: \[ \int (y + 1) dy = \frac{y^2}{2} + y \] The right side can be simplified: \[ \int \left(1 + \frac{1}{x}\right) dx = x + \log |x| \] ### Step 4: Combine the Results Combining the results from both integrals gives us: \[ \frac{y^2}{2} + y = x + \log |x| + C \] ### Step 5: Rearrange the Equation We can rearrange the equation: \[ \frac{y^2}{2} + y - x - \log |x| - C = 0 \] ### Final Solution Thus, the implicit solution of the differential equation is: \[ \frac{y^2}{2} + y - x - \log |x| = C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the DE (dy)/(dx) = 1 - x + y - xy is

(dy)/(dx)+(xy+y)/(xy+x)=0

The solution of (dy)/(dx)=2xy-3y+2x-3 is

The solution of ((dy)/(dx))^(2) + (2x + y) (dy)/(dx) + 2xy = 0 , is

Solution of (dy)/(dx)+2xy=y is

the solution of (dy)/(dx)(x^(2)y^(3)+xy)=1

find the solution of DE (dy)/(dx)=xy+x+y+1