Home
Class 12
MATHS
The solution of (x^2dy)/(dx)-x y=1+cosy/...

The solution of `(x^2dy)/(dx)-x y=1+cosy/x` is (a) `( b ) (c)tan(( d ) (e) (f) y/( g )(( h )2x)( i ) (j) (k))=c-( l )1/( m )(( n )2( o ) x^(( p )2( q ))( r ))( s ) (t) (u)` (v) (w) `( x ) (y)tan( z ) y/( a a ) x (bb) (cc)=c+( d d )1/( e e ) x (ff) (gg) (hh)` (ii) (jj) `( k k ) (ll)cos(( m m ) (nn) (oo) y/( p p ) x (qq) (rr) (ss))=1+( t t ) c/( u u ) x (vv) (ww) (xx)` (yy) (d) `( z z ) (aaa) (bbb) x^(( c c c )2( d d d ))( e e e )=(( f f f ) (ggg) c+( h h h ) x^(( i i i )2( j j j ))( k k k ) (lll))tan( m m m ) y/( n n n ) x (ooo) (ppp) (qqq)` (rrr)

A

`cos "" (y)/(x) =1 +(c )/(x)`

B

`x^2 =(c +x^2) tan"" (y)/(x)`

C

` tan"" (y)/(2x )= C-(1)/(2x^2)`

D

`tan ""(y)/(x) = c +(1)/(x)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

An angle is double of its supplement. The measure of the angle is (a) ( b ) (c) (d) (e) 60^(( f )0( g ))( h )\ ( i ) (j) (b) ( k ) (l) (m) (n) 120^(( o )0( p ))( q ) (r) (s) (t) ( u ) (v) (w) (x) 40^(( y )0( z ))( a a ) (bb) (cc) (d) ( d d ) (ee) (ff) (gg) 80^(( h h )0( i i ))( j j ) (kk) (ll)

In Fig.88 P R is a straight line and /_P Q S :/_S Q R=7: 5. The measure of /_S Q R is (a) ( b ) (c) (d) (e) 60^(( f )0( g ))( h ) (i) (j) (b) ( k ) (l) 62 (m) (n) (o)1/( p )2( q ) (r)^(( s )0( t ))( u ) (v) (w) (c) ( d ) (e) 67 (f) (g) (h)1/( i )2( j ) (k)^(( l )0( m ))( n ) (o) (p) (d) ( q ) (r) (s) (t) 75^(( u )0( v ))( w ) (x) (y)

The solution of cos(x+y)dy=dx is (A) y=cos^-1(y/x)+C (B) y=xsec(y/x)+C (C) y=tan((x+y)/2)+C (D) none of these

e^(-x) (dy)/(dx) = y(1+ tanx + tan^(2) x)

The solution of y(2xy+e^x)dx-e^xdy=0 is (A) x^2+ye^(-x)=C (B) xy^2+e^(-x)=C (C) x/y+e^(-x)/x^2=C (D) x^2+e^x/y=C

D.E whose solution is y=e^(3x)(c_(1)cos x+c_(2)sin x)

The solution of y^2dx+(x^2-xy+y^2)dy=0 is (A) y=Ce^(tan^-1x) (B) y=Ce^(tan^-1y) (C) y=Ce^(tan^-1(y/x)) (D) y=C[tan^-1(y/x)+e^(x^2)+y^2]

Solution of x dy/dx+y=xe^x is (A) xy=e^x(x+1)+C (B) xy=e^x(x-1)+C (C) xy=e^x(1-x)+C (D) xy=e^y(y-1)+C

The solution of the differential eqution (d^(2)y)/(dx^(2)) = e^(-2x) is y = c_(1)e^(-2x) +c_(2)x + c_(3) where c_(1) is

The solution of the equation (e^x+1)ydy+(y+1)dx=0 , is (A) e^(x+y)=C(y+1)e^x (B) e^(x+y)=C(x+1)(y+1) (C) e^(x+y)=C(y+1)(1+e^x) (D) e^(xy)=C(x+y)(e^x+1)