Home
Class 12
MATHS
The solution of the differential equatio...

The solution of the differential equation `(1+y^2)+(x-e^(tan^-1y))dy/dx=0` is (A) `x e^(2 tan^-1y)=e^(tan^-1y)+k` (B) `(x-2)=k e^(-tan^-1y)` (C) `2 x e^(tan^-1y)=e^(2 tan^-1y)+k` (D) `x e^(tan^-1y)=tan^-1y+k`

A

`(x-2)=Ke ^(tan ^(-1))y`

B

`2 Xe ^( tan ^(-1)) y= tan ^(-1)y+K`

C

`Xe tan ^(-1) Y= tan ^(-1) y+K`

D

`Xe ^2 tan ^(-1)y= tan ^(-1) y+K`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the differential equation (1+y^2)+(x-e^(tan^-1y))dy/dx=0 is (A) x e^(2 tan^-1y)=e^(tan^-1y)+k (B) (x-2)=k e^(-tan^-1y) (C) x e^(tan^-1y)=e^(2 tan^-1y)+k (D) x e^(tan^-1y)=tan^-1y+k

The solution of differential equation (1+y^(2))+(x-e^(tan^(-1)y))(dy)/(dx)=0 , is

The solution of the differential equation (1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x) is :

The solution of the differential equation x(e^(2y)-1)dy + (x^2-1) e^y dx=0 is

The solution of the differential equation (1+y^2)+(xe^(tan^-1)y) (dy)/(dx)=0, is (1) (x-2)=ke^(tan^) -1y) (2) 2xe^(2tan^-1y) =e^(2tan^-1y)+k (3) xe^(tan^-1y)=tan^-1y+k (4) xe^(2tan ^-1y)=e^(tan^-1y)+k

The solution of differential equation (1+x^(2)) (dy)/(dx) + y = e^(tan^(-1)x)

The solution of the differential equation (1+y^(2)) tan^(-1) x dx + y(1+x^(2)) dy = 0 is