Home
Class 12
MATHS
f(x) = sin x + int (- pi //2) ^( pi ...

` f(x) = sin x + int _(- pi //2) ^( pi //2) ( sin x + t cos x) ` f(t) dt then max value of f (x) :

A

`+( sqrt(5))/(3)`

B

`-(sqrt(5)/(3))`

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(x) \) defined as: \[ f(x) = \sin x + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin x + t \cos x) \, dt \] ### Step 1: Break down the integral We can separate the integral into two parts: \[ f(x) = \sin x + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin x \, dt + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \cos x \, dt \] ### Step 2: Evaluate the first integral The first integral is: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin x \, dt \] Since \( \sin x \) is constant with respect to \( t \), we can factor it out: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin x \, dt = \sin x \cdot \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dt = \sin x \cdot \left( \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) \right) = \sin x \cdot \pi \] ### Step 3: Evaluate the second integral Now, we evaluate the second integral: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \cos x \, dt \] Since \( \cos x \) is constant with respect to \( t \), we can factor it out: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \cos x \, dt = \cos x \cdot \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \, dt \] Now, we compute the integral \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \, dt \): \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \, dt = \left[ \frac{t^2}{2} \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{(\frac{\pi}{2})^2}{2} - \frac{(-\frac{\pi}{2})^2}{2} = \frac{\pi^2}{8} - \frac{\pi^2}{8} = 0 \] Thus, \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \cos x \, dt = \cos x \cdot 0 = 0 \] ### Step 4: Combine the results Now we can combine the results: \[ f(x) = \sin x + \sin x \cdot \pi + 0 = \sin x + \pi \sin x = (1 + \pi) \sin x \] ### Step 5: Find the maximum value of \( f(x) \) The maximum value of \( \sin x \) is 1. Therefore, the maximum value of \( f(x) \) is: \[ f(x)_{\text{max}} = (1 + \pi) \cdot 1 = 1 + \pi \] ### Final Answer Thus, the maximum value of \( f(x) \) is: \[ \boxed{1 + \pi} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int_(0)^(pi//2) f(x)dx is

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertible for

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

If f(x)=cos x+sin x, find f((pi)/(2))

If f(x)=cos x+sin x . find f ((pi)/(2)) .

int_(-pi)^( pi)sin x[f(cos x)]dx is equal to

If int_(0)^(pi/2) f ( sin2 x ) sin x dx = A int_(0)^(pi/4) f ( cos 2 x ) cos x dx then the value of A is ( sqrt2 = 1.41)

If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is

If int_(0)^(pi)x f(sin x) dx = a int_(0)^(pi)f (sin x) dx , then a =