Home
Class 12
MATHS
IF x cos ( y //x ) ( ydx + xdy)=y...

IF x cos ` ( y //x ) ( ydx + xdy)=y sin ( y // x) ( xdy - ydx )` y (1) = ` 2 pi ` then the value of ` 4 ( y (4) )/(pi ) cos (( y (4))/(4))` is :

A

1

B

2

C

3

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given differential equation and find the required value, we will follow these steps: ### Step 1: Rewrite the given equation The given equation is: \[ x \cos\left(\frac{y}{x}\right)(y \, dx + x \, dy) = y \sin\left(\frac{y}{x}\right)(x \, dy - y \, dx) \] ### Step 2: Simplify the equation We can rewrite the left-hand side: \[ x \cos\left(\frac{y}{x}\right)(y \, dx + x \, dy) = x \cos\left(\frac{y}{x}\right) \, d(xy) \] And the right-hand side: \[ y \sin\left(\frac{y}{x}\right)(x \, dy - y \, dx) = y \sin\left(\frac{y}{x}\right) \, d(y) \] ### Step 3: Divide by \(x^2\) To simplify further, we divide the entire equation by \(x^2\): \[ \frac{1}{x^2} \left( x \cos\left(\frac{y}{x}\right) \, d(xy) \right) = \frac{1}{x^2} \left( y \sin\left(\frac{y}{x}\right) \, d(y) \right) \] ### Step 4: Integrate both sides Now we can integrate both sides: \[ \int \frac{d(xy)}{x} \cos\left(\frac{y}{x}\right) = \int y \sin\left(\frac{y}{x}\right) \, d\left(\frac{y}{x}\right) \] ### Step 5: Solve the integrals After integration, we find: \[ \ln(xy) = \ln(\sec\left(\frac{y}{x}\right)) + C \] ### Step 6: Exponentiate to eliminate the logarithm Exponentiating both sides gives: \[ xy = C \sec\left(\frac{y}{x}\right) \] ### Step 7: Use the initial condition Given \(y(1) = 2\pi\): Substituting \(x = 1\) and \(y = 2\pi\): \[ 1 \cdot 2\pi = C \sec(2\pi) \] Since \(\sec(2\pi) = 1\), we find: \[ C = 2\pi \] ### Step 8: Substitute back to find the general solution Thus, the relationship becomes: \[ xy \cos\left(\frac{y}{x}\right) = 2\pi \] ### Step 9: Find \(y(4)\) To find \(y(4)\), substitute \(x = 4\): \[ 4y(4) \cos\left(\frac{y(4)}{4}\right) = 2\pi \] ### Step 10: Solve for \(y(4)\) This simplifies to: \[ y(4) \cos\left(\frac{y(4)}{4}\right) = \frac{\pi}{2} \] ### Step 11: Calculate the required value Now we need to find: \[ \frac{4y(4)}{\pi} \cos\left(\frac{y(4)}{4}\right) \] From the previous step, we know: \[ \frac{4y(4)}{\pi} \cos\left(\frac{y(4)}{4}\right) = 2 \] ### Final Answer Thus, the value is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

y ^ (2) (xdy + ydx) + xdy-ydx = 0

y log ydx-xdy=0

ydx-xdy = x ^ (8) y ^ (5) (3ydx + 4xdy)

For y gt 0 and x in R, ydx + y^(2)dy = xdy where y = f(x). If f(1)=1, then the value of f(-3) is

x^(2)y(2xdy+3ydx)=dy

If (cos ^ (4) x) / (cos ^ (2) y) + (sin ^ (4) x) / (sin ^ (2) y) = 1 then prove that (cos ^ (4) y) / (cos ^ (2) x) + (sin ^ (4) y) / (sin ^ (2) x) = 1

The solution of (xdx + is) / (ydx-xdy) = (x sin (x ^ (2) + y ^ (2))) / (y ^ (3)) is

xdx + is + (xdy-ydx) / (x ^ (2) + y ^ (2)) = 0

xdy + 2 ydx = 0 , " when " x=2 , y=1