Home
Class 12
MATHS
If K is constant such that xy + k...

If K is constant such that ` xy + k = e ^(((x-1)^2)/(2))` satisfies the differential equation ` x . ( dy )/( dx) = (( x^2 - x-1) y+ (x-1)` and ` y (1) =0` then find the value of K .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the value of the constant \( K \) such that the equation \[ xy + K = e^{\frac{(x-1)^2}{2}} \] satisfies the differential equation \[ x \frac{dy}{dx} = (x^2 - x - 1)y + (x - 1) \] with the initial condition \( y(1) = 0 \). ### Step 1: Rewrite the Differential Equation First, we rewrite the differential equation in standard form: \[ \frac{dy}{dx} + \frac{x^2 - x - 1}{x} y = \frac{x - 1}{x} \] ### Step 2: Identify the Integrating Factor The integrating factor \( \mu(x) \) is given by: \[ \mu(x) = e^{\int \frac{x^2 - x - 1}{x} dx} \] Calculating the integral: \[ \int \left( x - 1 - \frac{1}{x} \right) dx = \frac{x^2}{2} - x - \ln|x| + C \] Thus, the integrating factor is: \[ \mu(x) = e^{\frac{x^2}{2} - x - \ln|x|} = \frac{e^{\frac{x^2}{2} - x}}{x} \] ### Step 3: Multiply the Equation by the Integrating Factor Now, we multiply the entire differential equation by the integrating factor: \[ \frac{e^{\frac{x^2}{2} - x}}{x} \frac{dy}{dx} + \frac{e^{\frac{x^2}{2} - x}}{x} \cdot \frac{x^2 - x - 1}{x} y = \frac{e^{\frac{x^2}{2} - x}}{x} \cdot \frac{x - 1}{x} \] ### Step 4: Simplify the Left Side The left side can be expressed as a derivative: \[ \frac{d}{dx} \left( y \cdot \frac{e^{\frac{x^2}{2} - x}}{x} \right) = \frac{e^{\frac{x^2}{2} - x}}{x^2} (x - 1) \] ### Step 5: Integrate Both Sides Integrating both sides gives: \[ y \cdot \frac{e^{\frac{x^2}{2} - x}}{x} = \int \frac{e^{\frac{x^2}{2} - x}}{x^2} (x - 1) dx + C \] ### Step 6: Solve for \( y \) Now we need to solve for \( y \): \[ y = \frac{x}{e^{\frac{x^2}{2} - x}} \left( \int \frac{e^{\frac{x^2}{2} - x}}{x^2} (x - 1) dx + C \right) \] ### Step 7: Apply the Initial Condition Using the initial condition \( y(1) = 0 \): \[ 0 = \frac{1}{e^{\frac{1^2}{2} - 1}} \left( \int \frac{e^{\frac{1^2}{2} - 1}}{1^2} (1 - 1) dx + C \right) \] This implies \( C = e^{\frac{1}{2}} \). ### Step 8: Substitute Back to Find \( K \) Now we substitute back into the original equation: \[ xy + K = e^{\frac{(x-1)^2}{2}} \] At \( x = 1 \): \[ 1 \cdot 0 + K = e^{\frac{(1-1)^2}{2}} = e^0 = 1 \] Thus, \( K = 1 \). ### Final Answer The value of \( K \) is \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the differential equation (dy)/(dx)+(1)/(x)y=xy^(2)

Let y =f (x) satisfies the differential equation xy (1+y) dx =dy . If f (0)=1 and f (2) =(e ^(2))/(k-e ^(2)), then find the value of k.

let y(x) satisfying the differential equation x(dy)/(dx)+2y=x^(2) given y(1)=1 then y(x)=

If (dy)/dx = (xy)/(x^2 + y^2), y(1) = 1 and y(x) = e then x =

The solution of the differential equation x(dy)/(dx) + 2y = x^2 (X ne 0) with y(1) =1, is :

The solution to the differential equation (dy)/(dx)=((x+y+1)^(2))/(xy-y+2x-2) is

Solve the differential equation xy(dy)/(dx)=(1+y^(2))/(1+x^(2))(1+x+x^(2))

Solve the differential equation e^(x) tan y dx + (1-e^(x))sec^(2) y dy = 0

Solve the differential equation (dy)/(dx)=1+x+y^(2)+xy^(2) , when y=0 and x=0.

if ( dy )/(dx) =1 + x +y +xy and y ( -1) =0 , then the value of ( y (0) +3 - e^(1//2))