Home
Class 12
MATHS
Let Y = y(x) be the solution of the ...

Let Y = y(x) be the solution of the differential equation `( dy ) /( dx) + 2y = f(x) ` , where ` f(x) = { {:(1, x in [0,1]),( 0, " Otherwise "):}`
IF ` y(0) =0 ` then ` y ((3)/(2)) ` is :

A

` ( e^2-1)/( 2e ^3)`

B

` ( e^2-1)/(e^3)`

C

`(e ^2 +1)/( 2e ^4)`

D

`(1)/(2e)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( \frac{dy}{dx} + 2y = f(x) \) where \( f(x) = 1 \) for \( x \in [0, 1] \) and \( f(x) = 0 \) otherwise, and given that \( y(0) = 0 \), we will follow these steps: ### Step 1: Solve the differential equation for \( x \in [0, 1] \) For \( x \in [0, 1] \), we have: \[ \frac{dy}{dx} + 2y = 1 \] To solve this, we will find the integrating factor \( e^{\int 2 \, dx} = e^{2x} \). Multiplying through by the integrating factor: \[ e^{2x} \frac{dy}{dx} + 2e^{2x} y = e^{2x} \] This can be rewritten as: \[ \frac{d}{dx}(e^{2x} y) = e^{2x} \] ### Step 2: Integrate both sides Integrating both sides with respect to \( x \): \[ \int \frac{d}{dx}(e^{2x} y) \, dx = \int e^{2x} \, dx \] This gives: \[ e^{2x} y = \frac{1}{2} e^{2x} + C \] ### Step 3: Solve for \( y \) Now, we can solve for \( y \): \[ y = \frac{1}{2} + Ce^{-2x} \] ### Step 4: Apply the initial condition \( y(0) = 0 \) Using the initial condition \( y(0) = 0 \): \[ 0 = \frac{1}{2} + C \cdot e^{0} \] \[ 0 = \frac{1}{2} + C \implies C = -\frac{1}{2} \] ### Step 5: Substitute \( C \) back into the equation Thus, the solution for \( y \) when \( x \in [0, 1] \) is: \[ y = \frac{1}{2} - \frac{1}{2} e^{-2x} \] ### Step 6: Solve for \( x > 1 \) For \( x > 1 \), \( f(x) = 0 \): \[ \frac{dy}{dx} + 2y = 0 \] This simplifies to: \[ \frac{dy}{dx} = -2y \] The integrating factor is still \( e^{-2x} \), leading to: \[ \frac{d}{dx}(y) = -2y \] Integrating gives: \[ y = Ce^{-2x} \] ### Step 7: Ensure continuity at \( x = 1 \) To ensure continuity at \( x = 1 \): \[ y(1) = \frac{1}{2} - \frac{1}{2} e^{-2} = Ce^{-2} \] Calculating \( y(1) \): \[ y(1) = \frac{1}{2}(1 - e^{-2}) \] Setting the two expressions equal: \[ C e^{-2} = \frac{1}{2}(1 - e^{-2}) \] \[ C = \frac{1}{2} e^{2}(1 - e^{-2}) = \frac{1}{2} (e^{2} - 1) \] ### Step 8: Final expression for \( y \) Thus, for \( x > 1 \): \[ y = \left(\frac{1}{2}(e^{2} - 1)\right)e^{-2x} \] ### Step 9: Calculate \( y\left(\frac{3}{2}\right) \) Now we can find \( y\left(\frac{3}{2}\right) \): \[ y\left(\frac{3}{2}\right) = \left(\frac{1}{2}(e^{2} - 1)\right)e^{-3} \] ### Final Answer Thus, the value of \( y\left(\frac{3}{2}\right) \) is: \[ y\left(\frac{3}{2}\right) = \frac{1}{2}(e^{2} - 1)e^{-3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the differential equation x(dy)/(dx) + 2y = x^2 (X ne 0) with y(1) =1, is :

The solution of the differential equation x(dy)/(dx) = 2y + x^(3)e^(x), where y = 0 when x = 1 is

The solution of the differential equation (2x-4y+3)(dy)/(dx)+(x-2y+1)=0 is

Solution of the differential equation y dx+(x-y^(2))dy=0 is

Solution of the differential equation (dy)/(dx)+(2y)/(x)=0 , where y(1)=1 , is

Solution of the differential equation (x+y-1)dx+(2x+2y-3)dy=0 is

The solution of the differential equation x(e^(2y)-1)dy + (x^2-1) e^y dx=0 is