Home
Class 12
MATHS
The value of sum(k=1)^(13) (1)/(sin((pi)...

The value of `sum_(k=1)^(13) (1)/(sin((pi)/(4)+((k-1)pi)/(6))sin((pi)/(4)+(kpi)/(6)))` is equals to :

A

`3- sqrt(3)`

B

`2(3- sqrt(3))`

C

`2(sqrt(3)-1)`

D

`2(2+ sqrt(3))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of underset(k=1) overset(13)Sigma(1)/(sin ((pi)/(4)+(k-1)pi)/(6)sin((pi)/(4)+(kpi)/(6)) is equal to

The value of sum_(k=1)^(13)tan((k pi)/(12))tan(((k-1)pi)/(12)) is

The value of sum_(k=1)^(10)((sin(2 pi k))/(11)-i(cos(2 pi k))/(11)) is

The value of 1+sum_(k=0)^(12){(cos((2k+1)pi))/(13)+i(sin((2k+1)pi))/(13)}

The value of sin^(6)((pi)/(49))+cos^(6)((pi)/(49))-1+3sin^(2)((pi)/(49))cos^(2)((pi)/(49)) is equal to

(sin((pi)/(10))+sin(13(pi)/(10)))(cos^(2)((pi)/(6))-cos^(2)((pi)/(10))) is equal to

The value of (sin^(2)(pi)/(10)+sin^(2)(4 pi)/(10)+sin^(2)(6 pi)/(10)+sin^(2)(9 pi)/(10)) is