Home
Class 12
MATHS
A=(2+1)(2^2+1)(2^4+1)....(2^(2016)+1). T...

`A=(2+1)(2^2+1)(2^4+1)....(2^(2016)+1).` The value of `(A+1)^(1/(2016))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of [{(81)^(-1/2)}^(-1/4)]^2

The value of [{(1/7^2)^-2}\^(1//4)

The value of [[(2401)^(-1//2)]^(-1//4)]^(2) is

If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+...oo=(pi^(2))/(6) then value of 1-(1)/(2^(2))+(1)/(3^(2))-(1)/(4^(2))+...oo=

Find the value of ( 2^-1 - 4^-1 )^2

If a+1/a=4 . then the value of a^2+1/a^2 is :

(1/2016)^0 =_____

If a + 1/(a -2) = 4 , then the value of (a-2)^2 + (1/(a-2)^2) is