Home
Class 12
MATHS
If A + B + C = pi then prove that cos A ...

If `A + B + C = pi` then prove that `cos A + cos B + cos C = 1 + 4 sin(A/2) .sin(B/2).sin(C/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A + B + C = pi , prove that cos A + cos B + cos C= 1 + 4 sin(A/2) sin(B/2) sin(C/2)

cos A + cos B + cos C = 1 + 4sin ((A) / (2)) sin ((B) / (2)) sin ((C) / (2))

Prove that a cos A + b cos B + c cos C = 4 R sin A sin B sin C.

Prove that a cos A + b cos B + c cos C = 4 R sin A sin B sin C.

Prove that a cos A + b cos B + c cos C = 4 R sin A sin B sin C.

If A + B + C = (pi)/(2) , prove that cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B cos C

Prove that a cos A + b cos B + c cos C = 4R sin A sin B sin C

If A + B + C =pi , prove that : cos 2A - cos 2B + cos 2C= 1-4 sin A cos B sin C .

If A + B + C = 180^(@) , prove that cos A + cos B - cos C = -1 + 4 cos (A)/(2) cos"" (B)/(2) sin"" (C )/(2)