Home
Class 12
CHEMISTRY
The dimensions of Van der Waals constant...

The dimensions of Van der Waals constants a and b are respectively,

A

bar `L^(2) mol^(-2) and L mol^(-1)`

B

bar `L^(2) mol^(-1) and L^(-1) mol^(-1)`

C

bar `L^(2) mol^(2) and L^(-1) mol^(-1)`

D

`"bar"^(-1) L^(2) mol^(-2) and L^(-2) mol^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the dimensions of the Van der Waals constants \( a \) and \( b \), we start from the Van der Waals equation: \[ \left( P + \frac{aN^2}{V^2} \right) (V - Nb) = NRT \] ### Step 1: Analyze the term involving constant \( a \) The term \( \frac{aN^2}{V^2} \) represents a pressure correction. We can rearrange this to isolate \( a \): \[ P = \frac{aN^2}{V^2} \] ### Step 2: Identify the dimensions of pressure \( P \) Pressure \( P \) has the dimensions of force per unit area. In SI units, this is expressed as: \[ [P] = \text{Force} / \text{Area} = \frac{MLT^{-2}}{L^2} = ML^{-1}T^{-2} \] ### Step 3: Identify the dimensions of \( N \) and \( V \) - \( N \) (number of moles) has the dimension of \( [N] = \text{mol} \). - \( V \) (volume) has the dimension of \( [V] = L^3 \). ### Step 4: Substitute the dimensions into the equation Substituting the dimensions into the equation \( P = \frac{aN^2}{V^2} \): \[ ML^{-1}T^{-2} = \frac{a (\text{mol})^2}{(L^3)^2} \] This simplifies to: \[ ML^{-1}T^{-2} = \frac{a \cdot \text{mol}^2}{L^6} \] ### Step 5: Solve for the dimensions of \( a \) Rearranging gives: \[ a = \frac{ML^{-1}T^{-2} \cdot L^6}{\text{mol}^2} = \frac{ML^{5}T^{-2}}{\text{mol}^2} \] Thus, the dimensions of \( a \) are: \[ [a] = ML^{5}T^{-2} \cdot \text{mol}^{-2} \] ### Step 6: Analyze the term involving constant \( b \) The term \( b \) represents the volume correction. In the Van der Waals equation, we have: \[ V = V - Nb \implies Nb = V - V_{real} \] From this, we can express \( b \): \[ b = \frac{V}{N} \] ### Step 7: Solve for the dimensions of \( b \) Substituting the dimensions: - \( V \) has dimensions of \( L^3 \). - \( N \) has dimensions of \( \text{mol} \). Thus: \[ [b] = \frac{L^3}{\text{mol}} = L^3 \cdot \text{mol}^{-1} \] ### Final Result The dimensions of the Van der Waals constants are: - \( a: \, [a] = ML^{5}T^{-2} \cdot \text{mol}^{-2} \) - \( b: \, [b] = L^{3} \cdot \text{mol}^{-1} \)
Promotional Banner

Similar Questions

Explore conceptually related problems

Units of van der Waal's constants a and bare respectively

The units of the van der Waals constant a are