Home
Class 12
CHEMISTRY
Using the following thermochemical equat...

Using the following thermochemical equations :
`S("rhombic") + 3/2 O_(2)(g) rarr SO_(3)(g), " "Delta H = - 2x kJ mol^(-1)`
II. `SO_(2)(g) + 1/2 O_(2)(g) rarr SO_(3)(g), " "Delta H = -Y kJ mol^(-1)`
Find out the heat of formation of `SO_(2)(g)` in `kJ mol^(-1)`.

A

`(2x + y)`

B

`(x + y)`

C

`2x - y`

D

`(y - 2x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the heat of formation of SO₂(g) using the given thermochemical equations, we will follow these steps: ### Step 1: Write down the given thermochemical equations 1. \( S(\text{rhombic}) + \frac{3}{2} O_2(g) \rightarrow SO_3(g), \quad \Delta H_1 = -2x \, \text{kJ mol}^{-1} \) 2. \( SO_2(g) + \frac{1}{2} O_2(g) \rightarrow SO_3(g), \quad \Delta H_2 = -y \, \text{kJ mol}^{-1} \) ### Step 2: Identify the target reaction for the formation of SO₂ The heat of formation of SO₂(g) can be represented by the following reaction: \[ S(\text{rhombic}) + \frac{1}{2} O_2(g) \rightarrow SO_2(g) \] ### Step 3: Manipulate the given equations To derive the target reaction from the given equations, we will subtract the second equation from the first equation. 1. **First equation**: \[ S(\text{rhombic}) + \frac{3}{2} O_2(g) \rightarrow SO_3(g) \] \[ \Delta H_1 = -2x \] 2. **Second equation (reversed)**: \[ SO_3(g) \rightarrow SO_2(g) + \frac{1}{2} O_2(g) \] \[ \Delta H_2 = +y \] (since we reversed the reaction, the sign of ΔH changes) ### Step 4: Combine the reactions Now, we can combine the two reactions: - From the first equation, we have \( S + \frac{3}{2} O_2 \rightarrow SO_3 \) - From the reversed second equation, we have \( SO_3 \rightarrow SO_2 + \frac{1}{2} O_2 \) Combining these gives: \[ S + \frac{3}{2} O_2 - SO_3 + SO_3 \rightarrow SO_2 + \frac{1}{2} O_2 \] This simplifies to: \[ S + 1 O_2 \rightarrow SO_2 \] ### Step 5: Calculate the overall ΔH The overall change in enthalpy for the formation of SO₂(g) is given by: \[ \Delta H = \Delta H_1 - \Delta H_2 \] Substituting the values: \[ \Delta H = (-2x) - (-y) \] \[ \Delta H = -2x + y \] ### Conclusion Thus, the heat of formation of SO₂(g) is: \[ \Delta H = y - 2x \, \text{kJ mol}^{-1} \]

To find the heat of formation of SO₂(g) using the given thermochemical equations, we will follow these steps: ### Step 1: Write down the given thermochemical equations 1. \( S(\text{rhombic}) + \frac{3}{2} O_2(g) \rightarrow SO_3(g), \quad \Delta H_1 = -2x \, \text{kJ mol}^{-1} \) 2. \( SO_2(g) + \frac{1}{2} O_2(g) \rightarrow SO_3(g), \quad \Delta H_2 = -y \, \text{kJ mol}^{-1} \) ### Step 2: Identify the target reaction for the formation of SO₂ The heat of formation of SO₂(g) can be represented by the following reaction: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

At 25^(@)C , the following heat of formations are given: {:("Compound",SO_(2)(g),H_(2)O(l),,),(Delta_(f)H^(Theta)kJmol^(-1),-296.0,-285.0,,):} For the reactions at 25^(@)C , 2H_(2)S(g) +Fe(s) rarr FeS_(2)(s) +2H_(2)(g), DeltaH^(Theta) =- 137 kJ mool^(-1) H_(2)S(g) +(3)/(2)O_(2)(g) rarr H_(2)O(l) +So_(2)(g),DeltaH^(Theta) =- 562kJ mol^(-1) Calculate the heat of formation of H_(2)S(g) and FeS_(2)(g) at 25^(@)C .

The enthalpy of vapourisation of liquid water using the data : H_(2)(g)+1//2O_(2)(g)rarr H_(2)O(l) , Delta =-285.77 KJ mol^(-1) H_(2)(g)+1//2O_(2)(g)rarr H_(2)O(g) , Delta H=-241.84 KJ mol^(-1)