Home
Class 12
CHEMISTRY
Calculate in kJ for the following reac...

Calculate in kJ for the following reaction : `C(g) + O_(2)(g) rarr CO_(2)(g)`
Given that, `H_(2)O(g) + C(g) + H_(2)(g) , Delta H = +131 kJ`
`CO(g) + 1/2 O_(2)(g) rarr CO_(2)(g), " " Delta H = -242 kJ`
`H_(2)(g) + 1/2 O_(2)(g) rarr H_(2)O(g), " "DeltaH = -242 kJ`

A

`-393`

B

`+393`

C

`+655`

D

`-655`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the enthalpy change (ΔH) for the reaction \( C(g) + O_2(g) \rightarrow CO_2(g) \), we will use Hess's law, which states that the total enthalpy change for a reaction is the sum of the enthalpy changes for individual steps of the reaction. ### Given Reactions: 1. \( H_2O(g) + C(g) + H_2(g) \rightarrow \Delta H_1 = +131 \, \text{kJ} \) 2. \( CO(g) + \frac{1}{2} O_2(g) \rightarrow CO_2(g) \, \Delta H_2 = -242 \, \text{kJ} \) 3. \( H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g) \, \Delta H_3 = -242 \, \text{kJ} \) ### Step-by-Step Solution: **Step 1: Write down the target reaction.** We need to find ΔH for the reaction: \[ C(g) + O_2(g) \rightarrow CO_2(g) \] **Step 2: Rearrange the given reactions to derive the target reaction.** We need to manipulate the given reactions to cancel out the unwanted species and arrive at the target reaction. - From reaction 3, we can reverse it to get: \[ H_2O(g) \rightarrow H_2(g) + \frac{1}{2} O_2(g) \] This will change the sign of ΔH: \[ \Delta H = +242 \, \text{kJ} \] - Now, we can add this reversed reaction to reaction 1: \[ H_2O(g) + C(g) + H_2(g) \rightarrow \Delta H_1 = +131 \, \text{kJ} \] Combining these gives: \[ C(g) + H_2O(g) \rightarrow H_2(g) + CO(g) \] - Now we need to add reaction 2: \[ CO(g) + \frac{1}{2} O_2(g) \rightarrow CO_2(g) \, \Delta H_2 = -242 \, \text{kJ} \] **Step 3: Combine the reactions.** Now we combine: 1. \( C(g) + H_2O(g) \rightarrow H_2(g) + CO(g) \) (ΔH = +131 kJ) 2. \( CO(g) + \frac{1}{2} O_2(g) \rightarrow CO_2(g) \) (ΔH = -242 kJ) When we add these two reactions, \( H_2(g) \) and \( CO(g) \) will cancel out: \[ C(g) + O_2(g) \rightarrow CO_2(g) \] **Step 4: Calculate the total ΔH.** Now we sum the ΔH values: \[ \Delta H = +131 \, \text{kJ} + 242 \, \text{kJ} - 242 \, \text{kJ} \] \[ \Delta H = +131 - 242 \] \[ \Delta H = -393 \, \text{kJ} \] ### Final Answer: The enthalpy change (ΔH) for the reaction \( C(g) + O_2(g) \rightarrow CO_2(g) \) is: \[ \Delta H = -393 \, \text{kJ} \]

To calculate the enthalpy change (ΔH) for the reaction \( C(g) + O_2(g) \rightarrow CO_2(g) \), we will use Hess's law, which states that the total enthalpy change for a reaction is the sum of the enthalpy changes for individual steps of the reaction. ### Given Reactions: 1. \( H_2O(g) + C(g) + H_2(g) \rightarrow \Delta H_1 = +131 \, \text{kJ} \) 2. \( CO(g) + \frac{1}{2} O_2(g) \rightarrow CO_2(g) \, \Delta H_2 = -242 \, \text{kJ} \) 3. \( H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g) \, \Delta H_3 = -242 \, \text{kJ} \) ### Step-by-Step Solution: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Calculate the heat of formation of n butane from the followinf data: a. 2C_(4)H_(10)(g) +13O_(2)(g) rarr 8CO_(2)(g) +10H_(2)O(l), DeltaH = - 5757.2 kJ b. C(s) +O_(2) (g)rarrCO_(2)(g), DeltaH =- 405.4 kJ c. 2H_(2)(g) +O_(2)(g) rarr 2H_(2)O(l), DeltaH =- 572.4 kJ

H_(2)(g)+(1)/(2)O_(2)(g)rarr2H_(2)O(l), DeltaH =- 286 kJ 2H_(2)(g)+O_(2)(g)rarr2H_(2)O(l)……………kJ(+-?)

Consider the following reactions: I. C(s) + 1/2 O_(2)(g) rarr CO(g)," "Delta H_(1) = x_(1) II. CO(g) + 1/2 O_(2)(g) rarr CO_(2)(g), " "Delta H_(2) = x_(2) III. C(s) + CO_(2)(g) rarr 2CO(g)," "Delta H_(3) = x_(3) Select the correct statements:

Compounds with carbon-carbon double bond, such as ethylene, C_(2)H_(4) , add hydrogen in a reaction called hydrogenation. C_(2)H_(4)(g)+H_(2)(g) rarr C_(2)H_(6)(g) Calculate enthalpy change for the reaction, using the following combustion data C_(2)H_(4)(g) + 3O_(2)(g) rarr 2CO_(2)(g) + 2H_(2)O(g) , Delta_("comb")H^(Θ) = -1401 kJ mol^(-1) C_(2)H_(6)(g) + 7//2O_(2)(g)rarr 2CO_(2) (g) + 3H_(2)O(l) , Delta_("comb")H^(Θ) = -1550kJ H_(2)(g) + 1//2O_(2)(g) rarr H_(2)O(l) , Delta_("comb")H^(Θ) = -286.0 kJ mol^(-1)