Home
Class 12
CHEMISTRY
Calculate Delta(r)S("sys")^(@) for the f...

Calculate `Delta_(r)S_("sys")^(@)` for the following reaction at 373 K:
`CO(g) + H_(2)O(g) to CO_(2)(g) + H_(2)(g)`
`Delta_(r)H^(@) = -4.1 xx 10^(4) J, Delta_(r)S^(@)("unv") = 56 J//K`

A

`-54` J/K

B

`-166` J/K

C

`+54` J/K

D

`+166` J/K

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the change in entropy of the system (ΔS_sys) for the given reaction at 373 K, we can follow these steps: ### Step 1: Write down the given data We have the following information: - Reaction: \( \text{CO(g)} + \text{H}_2\text{O(g)} \rightarrow \text{CO}_2\text{(g)} + \text{H}_2\text{(g)} \) - \( \Delta_rH^\circ = -4.1 \times 10^4 \, \text{J} \) - \( \Delta_rS^\circ(\text{univ}) = 56 \, \text{J/K} \) - Temperature (T) = 373 K ### Step 2: Use the relationship between ΔS_univ, ΔS_sys, and ΔS_surr The total change in entropy of the universe (ΔS_univ) is given by the sum of the change in entropy of the system (ΔS_sys) and the change in entropy of the surroundings (ΔS_surr): \[ \Delta S_{\text{univ}} = \Delta S_{\text{sys}} + \Delta S_{\text{surr}} \] ### Step 3: Calculate ΔS_surr To find ΔS_surr, we can use the formula: \[ \Delta S_{\text{surr}} = -\frac{\Delta H_{\text{sys}}}{T} \] Since the reaction releases heat (ΔH is negative), we take the absolute value of ΔH: \[ \Delta S_{\text{surr}} = -\frac{-4.1 \times 10^4 \, \text{J}}{373 \, \text{K}} = \frac{4.1 \times 10^4 \, \text{J}}{373 \, \text{K}} \] ### Step 4: Perform the calculation for ΔS_surr Calculating ΔS_surr: \[ \Delta S_{\text{surr}} \approx \frac{41000}{373} \approx 110.0 \, \text{J/K} \] ### Step 5: Substitute ΔS_surr into the equation for ΔS_univ Now, we can substitute ΔS_surr back into the equation for ΔS_univ: \[ 56 \, \text{J/K} = \Delta S_{\text{sys}} + 110.0 \, \text{J/K} \] ### Step 6: Solve for ΔS_sys Rearranging the equation to find ΔS_sys: \[ \Delta S_{\text{sys}} = 56 \, \text{J/K} - 110.0 \, \text{J/K} = -54 \, \text{J/K} \] ### Final Answer Thus, the change in entropy of the system (ΔS_sys) is: \[ \Delta S_{\text{sys}} = -54 \, \text{J/K} \] ---

To calculate the change in entropy of the system (ΔS_sys) for the given reaction at 373 K, we can follow these steps: ### Step 1: Write down the given data We have the following information: - Reaction: \( \text{CO(g)} + \text{H}_2\text{O(g)} \rightarrow \text{CO}_2\text{(g)} + \text{H}_2\text{(g)} \) - \( \Delta_rH^\circ = -4.1 \times 10^4 \, \text{J} \) - \( \Delta_rS^\circ(\text{univ}) = 56 \, \text{J/K} \) - Temperature (T) = 373 K ...
Promotional Banner

Similar Questions

Explore conceptually related problems

What will be the value of triangle_(r)S_(sys)^(@) for the following reaction at 373 K: CO(g)+H_(2)O(g) to CO_(2)(g)+H_(2)(g) triangle_(r) H^(@)=-4.5 xx 10^(4) J, triangle_(r)S_("univ")^(@) =57.5J/K

Calculate the Delta_(r)G^(@) for the reaction: C_(6)H_(12)O_(6)(s) + 6O_(2)(g) to 6CO_(2)(g) + 6H_(2)O(l) Delta_(f)G^(@) values (kJ mol^(-1) ) are : C_(12)H_(12)O_(6)(s) = -910.2, CO_(2)(g) = -394.4, H_(2)O(l) = -237.2

Calculate the enthalpy of formation of ethyl alcohol from the following data : C_(2)H_(5)OH(l) + 3O_(2)(g) to 2CO_(2)(g) + 3H_(2)O(l), Delta_(r)H^(@) = -1368.0 kJ C(s) +O_(2)(g) to CO_(2)(g), Delta_(r)H^(@) = -393.5 kJ H_(2)(g) + 1/2O_(2)(g) to H_(2)O(l), Delta_(r)H^(@) = -286.0 kJ

Calculate Delta_(r)H^(@) for the reaction : Given Delta_(f)H^(@) values : 2H_(2)S(g) + 3O_2to 2H_(2)O(l) + 2SO_(2)(g) Given Delta_(f)H^(@) values : H_(2)S(g) = -20.60 , H_(2)O(l) = -285.83, SO_(2)(g) = -296.83 kJ "mol"^(-1)

Calculate the enthalpy of formation of methane from the following data : C(s) + O_(2)(g) to CO_(2)(g) Delta_(r)H^(@) = -393.5 kJ 2H_(2)(g) + O_(2)(g) to 2H_(2)O(l) Delta_(r)H^(@) = -571.8 kJ CH_(4)(g) + 2O_(2)(g) to CO_(2)(g) + 2H_(2)O(l) Delta_(r)H^(@) = -890.3 kJ