Home
Class 12
CHEMISTRY
What is the ratio of moles of Mg(OH)(2) ...

What is the ratio of moles of `Mg(OH)_(2)` and `Al(OH)_(3)`, present in 1L saturated solution of `Mg(OH)_(2)` and `Al(OH)_(3) K_(sp)` of `Mg(OH)_(2)=4xx10^(-12)` and `K_(sp)` of `Al(OH)_(3)=1xx10^(-33)`.[Report answer by multiplying `10^(-18)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio of moles of `Mg(OH)₂` and `Al(OH)₃` in a saturated solution, given their solubility product constants (`Ksp`). ### Step-by-Step Solution: 1. **Identify the Dissociation Reactions**: - For `Mg(OH)₂`: \[ Mg(OH)₂ \rightleftharpoons Mg^{2+} + 2OH^{-} \] If we let the solubility of `Mg(OH)₂` be \( x \) moles/L, then: - \( [Mg^{2+}] = x \) - \( [OH^{-}] = 2x \) - For `Al(OH)₃`: \[ Al(OH)₃ \rightleftharpoons Al^{3+} + 3OH^{-} \] If we let the solubility of `Al(OH)₃` be \( y \) moles/L, then: - \( [Al^{3+}] = y \) - \( [OH^{-}] = 3y \) 2. **Write the Ksp Expressions**: - For `Mg(OH)₂`: \[ K_{sp} = [Mg^{2+}][OH^{-}]^2 = x(2x)^2 = 4x^3 \] Given \( K_{sp} = 4 \times 10^{-12} \): \[ 4x^3 = 4 \times 10^{-12} \implies x^3 = 10^{-12} \implies x = 10^{-4} \text{ moles/L} \] - For `Al(OH)₃`: \[ K_{sp} = [Al^{3+}][OH^{-}]^3 = y(3y)^3 = 27y^4 \] Given \( K_{sp} = 1 \times 10^{-33} \): \[ 27y^4 = 10^{-33} \implies y^4 = \frac{10^{-33}}{27} \implies y = \left(\frac{10^{-33}}{27}\right)^{1/4} \] 3. **Calculate y**: - First, calculate \( \frac{10^{-33}}{27} \): \[ \frac{10^{-33}}{27} \approx 3.70 \times 10^{-35} \] - Now, take the fourth root: \[ y = (3.70 \times 10^{-35})^{1/4} = 10^{-8.75} \text{ moles/L} \approx 5.62 \times 10^{-9} \text{ moles/L} \] 4. **Find the Ratio of Moles**: - The ratio \( \frac{x}{y} \): \[ \frac{x}{y} = \frac{10^{-4}}{5.62 \times 10^{-9}} \approx 1.78 \times 10^{5} \] 5. **Multiply by \( 10^{-18} \)**: - Finally, multiply the ratio by \( 10^{-18} \): \[ 1.78 \times 10^{5} \times 10^{-18} = 1.78 \times 10^{-13} \] ### Final Answer: The ratio of moles of `Mg(OH)₂` to `Al(OH)₃`, reported by multiplying by \( 10^{-18} \), is approximately \( 1.78 \times 10^{-13} \). ---

To solve the problem, we need to find the ratio of moles of `Mg(OH)₂` and `Al(OH)₃` in a saturated solution, given their solubility product constants (`Ksp`). ### Step-by-Step Solution: 1. **Identify the Dissociation Reactions**: - For `Mg(OH)₂`: \[ Mg(OH)₂ \rightleftharpoons Mg^{2+} + 2OH^{-} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Calculate pH of a saturated solution of Mg(OH)_(2) . (K_(SP)for Mg(OH)_(2)=8.9xx10^(-12))

The pH of a saturated solution of Fe(OH)_(2) is 8.67. What is the K_(sp) for Fe(OH)_(2) ?

Calculate pH of saturated solution Mg(OH)_(2),K_(sp) for Mg(OH)_(2) is 8.9 xx 10^(-12) .

Calculate the concentration of Mg^(2+) ions and OH^(-) ions in a saturated soluton of Mg(OH)_(2) .The solubility product of Mg(OH)_(2) " is " 9.0 xx 10^(-12)

What is the pH of a saturated solution of Cu(OH)_(2) ? (K_(sp)=2.6xx10^(-19)

Solubilities of Ni(OH)_(2) and AgCN are S_(1) and S_(2) . If K_(sp)[Ni(OH)_(2)]=2xx10^(-15) K_(sp)[AgCN]=6xx10^(-17) , then