Home
Class 10
MATHS
(3)|((7)/(3))/((3)/(2))(5)/(3)|(1)/(2)|...

(3)|((7)/(3))/((3)/(2))(5)/(3)|(1)/(2)|

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(2)/(3)1(5)/(3)(1)/(3)(2)/(3)(4)/(3)(7)/(3)2(2)/(3)] and B=[(2)/(3)(2)/(5)1(1)/(5)(2)/(5)(4)/(5)(4)/(5)(7)/(3)(6)/(5)(2)/(5)], then compute 3A_(-)=5B

If A=[{:((2)/(3),1,(5)/(3)),((1)/(3),(2)/(3),(4)/(3)),((7)/(3),2,(2)/(3)):}]andB=[{:((2)/(5),(3)/(5),1),((1)/(5),(2)/(5),(4)/(5)),((7)/(5),(6)/(5),(2)/(5)):}] ,then compute 3A-5B.

|{:((7)/(3),(5)/(3)),((3)/(2),(1)/(2)):}|

A=[[(2)/(3),1,(5)/(3)(1)/(3),(2)/(3),(4)/(3)(7)/(3),2,(2)/(3)]] and B=[[(2)/(5),(3)/(5),1(1)/(5),(2)/(5),(4)/(5)(7)/(5),(6)/(5),(2)/(5)]]

Solve (i) 2-(3)/(5)(ii)4+(7)/(8)(iii)(3)/(5)+(2)/(7)(iv)(9)/(11)-(4)/(5)(v)(7)/(10)+(2)/(5)+(3)/(2)(vi)(2)(2)/(3)+(3)(1)/(2) (vii) (8)(1)/(2)-(3)(5)/(8)

If A=[((2)/(3), 1,(5)/(3)),((1)/(3), (2)/(3), (4)/(3)),((7)/(3), 2, (2)/(3))] and B=[((2)/(5), (3)/(5), 1),((1)/(5), (2)/(5), (4)/(5)),((7)/(5),(6)/(5),(2)/(5))] , then compute 3A-5B .

If A=[((2)/(3), 1,(5)/(3)),((1)/(3), (2)/(3), (4)/(3)),((7)/(3), 2, (2)/(3))] and B=[((2)/(5), (3)/(5), 1),((1)/(5), (2)/(5), (4)/(5)),((7)/(5),(6)/(5),(2)/(5))] , then compute 3A-5B .

If A=[((2)/(3), 1,(5)/(3)),((1)/(3), (2)/(3), (4)/(3)),((7)/(3), 2, (2)/(3))] and B=[((2)/(5), (3)/(5), 1),((1)/(5), (2)/(5), (4)/(5)),((7)/(5),(6)/(5),(2)/(5))] , then compute 3A-5B .