Home
Class 11
MATHS
The chord A B of the parabola y^2=4a x c...

The chord `A B` of the parabola `y^2=4a x` cuts the axis of the parabola at `Cdot` If `A-=(a t1 2,2a t_1),B-=(a t2 2,2a t_2)` , and `A C : A B1:3,` then prove that `t_2+2t_1=0` .

Promotional Banner

Similar Questions

Explore conceptually related problems

The chord A B of the parabola y^2=4a x cuts the axis of the parabola at Cdot If A-=(a t_1 ^2,2a t_1),B-=(a t_2 ^2,2a t_2) , and A C : A B 1:3, then prove that t_2+2t_1=0 .

The chord A B of the parabola y^2=4a x cuts the axis of the parabola at Cdot If A-=(a t_1^ 2,2a t_1),B-=(a t_2^2,2a t_2) , and A C : A B=1:3, then prove that t_2+2t_1=0 .

The chord A B of the parabola y^2=4a x cuts the axis of the parabola at Cdot If A-=(a t_1^ 2,2a t_1),B-=(a t_2^2,2a t_2) , and A C : A B=1:3, then prove that t_2+2t_1=0 .

The chord AB of the parabola y^(2)=4ax cuts the axis of the parabola at C. If A-=(at_(1)^(2),2at_(1)),B-=(at_(2)^(2),2at_(2)), and AC:AB1:3, then prove that t_(2)+2t_(1)=0

If the normal to y^(2) =4ax at t_1 cuts the parabola again at t_2 then

If the tangents to the parabola y^(2)=4ax make complementary angles with the axis of the parabola then t_(1),t_(2)=

If the normal to the parabola y^2=4a x at point t_1 cuts the parabola again at point t_2 , then prove that t2 2geq8.

If the normal to the parabola y^2=4a x at point t_1 cuts the parabola again at point t_2 , then prove that t_2 2geq8.

IF the normal to the parabola y^2=4ax at point t_1 cuts the parabola again at point t_2 , prove that t_2^2ge8

Chord AC of parabola y^2 = 4x subtend pi/2 at points B & D on the parabola. If A, B, C, D are represented by t1, t2, t3, t4, then