Home
Class 12
MATHS
A curve g(x)=intx^(27)(1+x+x^2)^6(6x^2+5...

A curve `g(x)=intx^(27)(1+x+x^2)^6(6x^2+5x+4)dx` is passing through origin. Then `g(1)=(3^7)/7` (b) `g(1)=(2^7)/7` `g(-1)=1/7` (d) `g(-1)=(3^7)/(14)`

Promotional Banner

Similar Questions

Explore conceptually related problems

A curve g(x)=intx^(27)(1+x+x^2)^6(6x^2+5x+4)dx is passing through origin. Then (a) g(1)=(3^7)/7 (b) g(1)=(2^7)/7 g(-1)=1/7 (d) g(-1)=(3^7)/(14)

A curve g(x)=intx^(27)(1+x+x^2)^6(6x^2+5x+4)dx is passing through origin. Then (a) g(1)=(3^7)/7 (b) g(1)=(2^7)/7 (c) g(-1)=1/7 (d) g(-1)=(3^7)/(14)

A curve g(x)=intx^(27)(1+x+x^2)^6(6x^2+5x+4)dx is passing through origin. Then (a) g(1)=(3^7)/7 (b) g(1)=(2^7)/7 (c) g(-1)=1/7 (d) g(-1)=(3^7)/(14)

A curve g(x)=int x^(27)(1+x+x^(2))^(6)(6x^(2)+5x+4)dx is passing through origin.Then g(1)=(3^(7))/(7) (b) g(1)=(2)/(7)g(-1)=(1)/(7)(d)g(-1)=(3^(7))/(14)

((2)/(3)x+4)((3)/(2)x+6)-((1)/(7)x-1)((1)/(7)x+1)

If (1-x^(7))/(x(1+x^(7)))dx=a ln|x|+b ln|x^(7)+1|+c then a=1,b=(2)/(7) (b) a=-1,b=(2)/(7)a=1,b=-(2)/(7)(d)a=-1,b=-(2)/(7)

If f (x) = (3x + 4)/( 5x -7), g (x) = (7x +4)/(5x -3) then f [g(x)]=

If f (x) = (3x + 4)/( 5x -7), g (x) = (7x +4)/(5x -3) then f [g(x)]=