Home
Class 12
MATHS
lit(x rarr0)(tan x-x)/(x^(2)tan x)=...

lit_(x rarr0)(tan x-x)/(x^(2)tan x)=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(tan x-x)/(x^(2)tan x)

lim_(x rarr0)(tan x-x)/(x^(3))

lim_(x rarr0)(tan x-x)/(x^(3))

lim_(x rarr0)(tan x)/(x)

lim_(x rarr0)(tan x)/(x)

If lim_(x rarr0)((tan x)/(x))^((tan x)/(x-tan x) exists and equal to l , then which of the following is ( are ) correct?

lim_(x rarr0)(tan x)/(sin^(2)x)

lim_(x rarr0) [(tan x)/(x)]

Lim_(x rarr0)(x-tan x)/(x^(3))

lim_(x rarr0)(|tan x|sin x)/(x^(2))