Home
Class 10
MATHS
tan^2alpha-tan^2beta=(sin^2alpha-sin^2be...

`tan^2alpha-tan^2beta=(sin^2alpha-sin^2beta)/(cos^2alphacos^2beta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that , tan(alpha+beta)tan(alpha-beta)=(sin^2alpha-sin^2beta)/(cos^2alpha-sin^2beta)

Prove that: tan(alpha+beta)tan(alpha-beta)=(sin^2 alpha-sin^2 beta)/(cos^2 alpha-sin^2 beta)

tan (alpha + beta) tan (alpha-beta) = (sin ^ (2) alpha-sin ^ (2) beta) / (cos ^ (2) alpha-sin ^ (2) beta)

If tan theta=(tan alpha+tan beta)/(1+tan alpha tan beta) then show that sin2 theta=(sin2 alpha+sin2 beta)/(1+sin2 alpha sin2 beta)

If tan theta = ( tan alpha - tan beta)/(1-tan alpha tan beta),"show that", sin 2 theta=(sin 2 alpha- sin 2 beta)/(1- sin2 alpha sin 2 beta).

If tan theta = ( tan alpha + tan beta)/(1 + tan alpha tan beta),"show that " sin 2 theta =(sin 2 alpha + sin 2 beta)/(1+sin 2 alpha sin 2 beta)

If cos^2alpha-sin^2alpha=tan^2beta," then prove that "tan^2alpha=cos^2beta-sin^2beta .

If cos^2alpha-sin^2alpha=tan^2beta," then prove that "tan^2alpha=cos^2beta-sin^2beta .

If cos^2alpha-sin^2alpha=tan^2beta," then prove that "tan^2alpha=cos^2beta-sin^2beta .

(sin^(2)alpha-sin^(2)beta)/(sin alpha cos alpha-sin beta cos beta)=tan(alpha+beta)