Home
Class 12
MATHS
ff(x^(x)+y^(x))=1," show that "(dy)/(dx)...

ff(x^(x)+y^(x))=1," show that "(dy)/(dx)=-{(x^(x)(1+log x)+y^(x)(log y))/(xy^(x-1))}

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(x)+y^(x)=1, prove that (dy)/(dx)=-{(x^(x)(1+log x)+y^(x)log y)/(xy^((x-1)))}

If x^(y).y^(x)=1, prove that (dy)/(dx)=-(y(y+x log y))/(x(y log x+x))

If x^(y)y^(x),=1, prove that (dy)/(dx),=-(y(y+x log y))/(x(y log x+x))

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y) y^(x)=5 , then show that (dy)/(dx)= -(log y + (y)/(x))/(log x + (x)/(y))

x^(y)=e^(x-y) so,prove that (dy)/(dx)=(log x)/((1+log x)^(2))

(dy)/(dx)=(x+y)ln(x+y)-1

If x^(y)=y^(x) , prove that (dy)/(dx)=((y)/(x)-log y)/((x)/(y)-log x)

If x^(y)=e^(x-y), Prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))