Home
Class 11
MATHS
Lt sum(n rarr oo)^( n)(1)/(n)sqrt((n+r)/...

Lt sum_(n rarr oo)^( n)(1)/(n)sqrt((n+r)/(n-r))=

Promotional Banner

Similar Questions

Explore conceptually related problems

m sum_(r=1)^(n)(1)/(n)sqrt((n+r)/(n-r))

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

What is the value of,Lt_(n rarr oo)sum_(r=1)^(n)(1)/(n)e^((r)/(n))

Lt_(ntooo)sum_(r=1)^(n)(1)/(n)[sqrt ((n+r)/(n-r))]

The value of lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)((r)/(n+r)) is equal to

If f(x) is integrable over [1,], then int_(2)^(2)f(x)dx is equal to lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)f((r)/(n))lim_(n rarr oo)(1)/(n)sum_(r=n+1)^(2n)f((r)/(n))lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)f((r+n)/(n))lim_(n rarr oo)(1)/(n)sum_(r=1)^(2n)f((r)/(n))