Home
Class 10
MATHS
(1-(1)/(2))(1-(1)/(3))(1-(1)/(4))cdots(1...

(1-(1)/(2))(1-(1)/(3))(1-(1)/(4))cdots(1-(1)/(n+1))=(1)/(n+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of the following? (1-(1)/(2))(1-(1)/(3))(1-(1)/(4))dots(1-(1)/(n-1))(1-(1)/(n))

Prove the following by using the Principle of mathematical induction AA n in N (1-(1)/(2))(1-(1)/(3)) (1-(1)/(4))…….(1-(1)/(n+1))=(1)/(n+1)

prove that (1-(1)/(2^(2)))(1-(1)/(3^(2)))(1-(1)/(4^(2)))(1-(1)/(n^(2)))=(n+1)/(2n) for all natural numbers,n>=1(1-(1)/(n^(2)))=(n+1)/(2n)

For a positive integer n let a(n)=1+(1)/(2)+(1)/(3)+(1)/(4)cdots+(1)/((2^(n))-1). Then a(100) 100c.a(200)<=100d.a(200)<=100

If S_(1), S_(2),cdots S_(n) , ., are the sums of infinite geometric series whose first terms are 1, 2, 3,…… ,n and common ratios are (1)/(2) ,(1)/(3),(1)/(4),cdots,(1)/(n+1) then S_(1)+S_(2)+S_(3)+cdots+S_(n) =

(1)/(n)+(1)/(n+1)+(1)/(n+2)++(1)/(2n-1)=1-(1)/(2)+( 1)/(3)-(1)/(4)++(1)/(2n-1)

(1)/(1.2)+(1)/(2.3)+(1)/(3.4)+.......+(1)/(n(n+1))=(n)/(n+1),n in N is true for

For all quad prove that (1)/(1.2)+(1)/(2.3)+(1)/(3.4)+...+(1)/(n(n+1))=(n)/(n+1)