Home
Class 11
MATHS
If sinx+ sin^2x =1, then cos^8x+ 2cos^6x...

If `sinx+ sin^2x =1`, then` cos^8x+ 2cos^6x +cos^4x `=(A) 2 (B) 1 (C) 3 (D) `1/2`

Text Solution

Verified by Experts

`sinx+sin^2=1`
`sinx=1-sin^2x`
`sinx=cos^2x-(1)`
`cos^8x+2cos^6x+cos^4x`
from equation 1
`sin^4x+2sin^3x+sin^2x`
`sin^2x(sin^2x+2sinx+1)`
`sin^2x(sinx+1)^2`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin x+sin^2=1 , then cos^8 x+2 cos^6 x+cos^4 x=

If sin x+sin^(2)=1, then cos^(8)x+2cos^(6)x+cos^(4)x=

If sin x + sin^(2) x =1 " then " cos^(8) x + 2 cos^(6) x + cos^(4) x =

If sinx+sin^2x=1 then show that cos^2 x +cos^4 x=1

If sinx+sin^2x=1. then evaluate : (i) cos^8x+2cos^6x+cos^4x

If sinx + sin^(2)x =1 then cos^(12)2x + 3cos^(10)x+3cos^(8)x + cos^(6)x =

if sin x +sin^2 x = 1 then cos^12 x+ 3 cos^10 x + 3 cos^8 x + cos ^6 x =

If sin x+sin^(2)x+sin^(3)x=1 then cos^(6)x-4cos^(4)x+8 cos^(2)x=

If sin x + sin^(2) x= 1 , then the value of cos^(8) x - cos ^(4) x + 2cos^(2)x -1 is equal to :