Home
Class 12
MATHS
sum(r=1)^n(r^(2 \ n)Cr)=4!, then n can b...

`sum_(r=1)^n(r^(2 \ n)C_r)=4!`, then `n` can be

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

If a_(n)=sum_(r=0)^(n)(1)/(*^(n)C_(r)), the value of sum_(r=0)^(n)(n-2r)/(n^(n)C_(r))

If sum_(r=1)^(n)r^(4)=F(x), then prove that the value of sum_(n=1)^(n)r(n-r)^(3) is (1)/(4)[n^(3)(n+1)^(2)-4F(x)]

Stetemet - 1: sum_(r=0)^(n) r. ""^(n)C_(r) = n 2^(n-1) Statement-2: sum_(r=0)^(n) r. ""^(n)C_(r) x^(r) = n (1 + x )^(n-1) x

Stetemet - 1: sum_(r=0)^(n) r. ""^(n)C_(r) = n 2^(n-1) Statement-2: sum_(r=0)^(n) r. ""^(n)C_(r) x^(r) = n (1 + x )^(n-1) x