Home
Class 12
MATHS
If 0le[x]lt2,-1le[y]lt1and1le[z]lt3, whe...

If `0le[x]lt2,-1le[y]lt1and1le[z]lt3`, where `[*]` denotes the greatest integer function, then the maximum value of the determinant
`|{:([x]+1,,[y],,[z]),([x],,[y]+1,,[z]),([x],,[y],,[z]+1):}|` is -

A

2

B

4

C

6

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given the constraints on \(x\), \(y\), and \(z\). We will denote the greatest integer function as \([x]\), \([y]\), and \([z]\). ### Step-by-step Solution: 1. **Understanding the Constraints**: - The constraints given are: - \(0 \leq [x] < 2\) - \(-1 \leq [y] < 1\) - \(1 \leq [z] < 3\) From these constraints, we can deduce the possible values for \([x]\), \([y]\), and \([z]\): - \([x]\) can take values \(0\) or \(1\). - \([y]\) can take values \(-1\) or \(0\). - \([z]\) can take values \(1\) or \(2\). 2. **Setting Up the Determinant**: The determinant we need to evaluate is: \[ D = \begin{vmatrix} [x] + 1 & [y] & [z] \\ [x] & [y] + 1 & [z] \\ [x] & [y] & [z] + 1 \end{vmatrix} \] 3. **Calculating the Determinant**: We will expand the determinant using the formula for a \(3 \times 3\) determinant: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] where: - \(a = [x] + 1\), \(b = [y]\), \(c = [z]\) - \(d = [x]\), \(e = [y] + 1\), \(f = [z]\) - \(g = [x]\), \(h = [y]\), \(i = [z] + 1\) Plugging in these values, we get: \[ D = ([x] + 1)(([y] + 1)([z] + 1) - [z][y]) - [y]([x]([z + 1] - [z]) + [z]([x] - [x]) + [z]([y] - [y])) \] 4. **Evaluating for Maximum Values**: We will evaluate \(D\) for all combinations of \([x]\), \([y]\), and \([z]\): - For \([x] = 0\), \([y] = -1\), \([z] = 1\): \[ D = (0 + 1)((-1 + 1)(1 + 1) - 1 \cdot (-1)) = 1(0 + 1) = 1 \] - For \([x] = 1\), \([y] = 0\), \([z] = 2\): \[ D = (1 + 1)((0 + 1)(2 + 1) - 2 \cdot 0) = 2(1 \cdot 3) = 6 \] - For \([x] = 1\), \([y] = -1\), \([z] = 1\): \[ D = (1 + 1)((-1 + 1)(1 + 1) - 1 \cdot (-1)) = 2(0 + 1) = 2 \] - For \([x] = 0\), \([y] = 0\), \([z] = 2\): \[ D = (0 + 1)((0 + 1)(2 + 1) - 2 \cdot 0) = 1(1 \cdot 3) = 3 \] 5. **Finding the Maximum Value**: After evaluating all combinations, the maximum value of the determinant \(D\) is \(6\). ### Final Answer: The maximum value of the determinant is \(6\).

To solve the problem, we need to evaluate the determinant given the constraints on \(x\), \(y\), and \(z\). We will denote the greatest integer function as \([x]\), \([y]\), and \([z]\). ### Step-by-step Solution: 1. **Understanding the Constraints**: - The constraints given are: - \(0 \leq [x] < 2\) - \(-1 \leq [y] < 1\) ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 10

    CAREER POINT|Exercise PART (C) - MATHS|30 Videos
  • MOCK TEST 3

    CAREER POINT|Exercise MATHS|30 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(,x[x], 0 le x lt 2),(,(x-1)[x], 2 le x lt 3):} where [.] denotes the greatest integer function, then

Find the value of the "determinant" |{:(1,x,y+z),(1,y,z+x),(1,z,x+y):}|

Let f(x)=(x^(2)+1)/([x]),1 lt x le 3.9.[.] denotes the greatest integer function. Then

If [] denotes the greatest integer less than or equal to the real number under consideration and -1lt=xlt0,0lt=ylt1,1lt=zlt2, the value of the determinant |{:([x]+1,[y],[z]),([x],[y]+1,[z]),([x],[y],[z]+1):}| is

The value of the determinant |{:(1,x,x^2),(1,y,y^2),(1,z,z^2):}| is equal to

If f(x) = {{:(|1-4x^(2)|",",0 le x lt 1),([x^(2)-2x]",",1 le x lt 2):} , where [] denotes the greatest integer function, then

If [] denotes the greatest integer less than or equal to the ral number under consideration, and -1lt=x<0,0lt=y<1,1lt=a<2, then the value of the determinant |[x]+1[y][z][x][y]+1[z][x][y][z]+1| is [x] b. [y] c. [z] d. none of these

CAREER POINT-MOCK TEST 2-PART ( C)- MATHS
  1. If z is a complex number, then the minimum value of |z|+|z-1| is -

    Text Solution

    |

  2. x+y+z=15 if 9, x, y, z, a are in A.P. while (1)/(X)+(1)/(Y)+(1)/(Z)=(5...

    Text Solution

    |

  3. lim(hto0)(1)/(h)int(x)^(x+h)(dz)/(z+sqrt(z^(2)+1)) is equal to -

    Text Solution

    |

  4. If the area bounded by the curve y=f(x), x-axis and the ordinates x=1 ...

    Text Solution

    |

  5. If f(x) = e^(x), then lim(xto0) (f(x))^((1)/({f(x)})) (where { } deno...

    Text Solution

    |

  6. Let f(x) = x[x], xinz, [.] is GIF then "f"^(')(x) =

    Text Solution

    |

  7. If f(x)={{:(,[x]+[-x],,,xne2 ),(," "lamda,,,x=2):} then f is continuo...

    Text Solution

    |

  8. Let f(x)={x^3-x^2+10 x-5,xlt=1-2x+(log)2(b^2-2),x >1 Find the values ...

    Text Solution

    |

  9. The equations of the perpendicular bisector of the sides AB and perpen...

    Text Solution

    |

  10. If (1,a), (2,b), (c^2,3) are vertices of a triangle then its centroid ...

    Text Solution

    |

  11. A polygon has 25 sides, the lengths of which starting from the smalles...

    Text Solution

    |

  12. The area bounded by the curves y= x^(2)-2x-1, e^(x)+y+1=0 and ordinate...

    Text Solution

    |

  13. Let S be the set of real values of parameter lamda for which the equat...

    Text Solution

    |

  14. If f(x)=x^(3)+ax^(2)+ax+x(tantheta+cottheta) is increasing for all x ...

    Text Solution

    |

  15. If f(x) = { 3 + |x-k|, x leq k; a^2 -2 + sin(x-k)/(x-k), xgtk} has min...

    Text Solution

    |

  16. int(x^(2)-1)/((x^(2)+1)sqrt(x^(4)+1)) dx is equal to -

    Text Solution

    |

  17. The void relation on a set A is

    Text Solution

    |

  18. If 0le[x]lt2,-1le[y]lt1and1le[z]lt3, where [*] denotes the greatest in...

    Text Solution

    |

  19. The system of equations 6x+5y+lamdaz= 0, 3z-y+4z= 0, x+2y-3z=0 has non...

    Text Solution

    |

  20. The median of following frequency distribution is {:(,"Class",,fi),(...

    Text Solution

    |