Home
Class 12
MATHS
If x^(2) - x+ 1 =0, sum(n=1)^(5) (x^(n...

If `x^(2) - x+ 1 =0, sum_(n=1)^(5) (x^(n) +(1)/(x^(n)))^2` equals -

A

8

B

10

C

12

D

14

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( \sum_{n=1}^{5} \left( x^n + \frac{1}{x^n} \right)^2 \) given that \( x^2 - x + 1 = 0 \). ### Step 1: Find the roots of the quadratic equation The roots of the equation \( x^2 - x + 1 = 0 \) can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -1, c = 1 \). Thus, \[ x = \frac{1 \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{1 \pm \sqrt{1 - 4}}{2} = \frac{1 \pm \sqrt{-3}}{2} = \frac{1 \pm i\sqrt{3}}{2} \] Let \( \omega_1 = \frac{1 + i\sqrt{3}}{2} \) and \( \omega_2 = \frac{1 - i\sqrt{3}}{2} \). ### Step 2: Calculate \( x + \frac{1}{x} \) To simplify the expression, we first compute \( x + \frac{1}{x} \): \[ \frac{1}{x} = \frac{2}{1 + i\sqrt{3}} \cdot \frac{1 - i\sqrt{3}}{1 - i\sqrt{3}} = \frac{2(1 - i\sqrt{3})}{1 + 3} = \frac{1 - i\sqrt{3}}{2} \] Thus, \[ x + \frac{1}{x} = \frac{1 + i\sqrt{3}}{2} + \frac{1 - i\sqrt{3}}{2} = \frac{2}{2} = 1 \] ### Step 3: Calculate \( x^2 + \frac{1}{x^2} \) Using the identity \( x^2 + \frac{1}{x^2} = (x + \frac{1}{x})^2 - 2 \): \[ x^2 + \frac{1}{x^2} = 1^2 - 2 = -1 \] ### Step 4: Calculate \( x^3 + \frac{1}{x^3} \) Using the identity \( x^3 + \frac{1}{x^3} = (x + \frac{1}{x})(x^2 + \frac{1}{x^2}) - (x + \frac{1}{x}) \): \[ x^3 + \frac{1}{x^3} = 1 \cdot (-1) - 1 = -1 - 1 = -2 \] ### Step 5: Calculate \( x^4 + \frac{1}{x^4} \) Using the identity \( x^4 + \frac{1}{x^4} = (x^2 + \frac{1}{x^2})^2 - 2 \): \[ x^4 + \frac{1}{x^4} = (-1)^2 - 2 = 1 - 2 = -1 \] ### Step 6: Calculate \( x^5 + \frac{1}{x^5} \) Using the identity \( x^5 + \frac{1}{x^5} = (x + \frac{1}{x})(x^4 + \frac{1}{x^4}) - (x^3 + \frac{1}{x^3}) \): \[ x^5 + \frac{1}{x^5} = 1 \cdot (-1) - (-2) = -1 + 2 = 1 \] ### Step 7: Calculate the sum Now we can compute the required sum: \[ \sum_{n=1}^{5} \left( x^n + \frac{1}{x^n} \right)^2 = \left( x + \frac{1}{x} \right)^2 + \left( x^2 + \frac{1}{x^2} \right)^2 + \left( x^3 + \frac{1}{x^3} \right)^2 + \left( x^4 + \frac{1}{x^4} \right)^2 + \left( x^5 + \frac{1}{x^5} \right)^2 \] Calculating each term: - \( (x + \frac{1}{x})^2 = 1^2 = 1 \) - \( (x^2 + \frac{1}{x^2})^2 = (-1)^2 = 1 \) - \( (x^3 + \frac{1}{x^3})^2 = (-2)^2 = 4 \) - \( (x^4 + \frac{1}{x^4})^2 = (-1)^2 = 1 \) - \( (x^5 + \frac{1}{x^5})^2 = 1^2 = 1 \) Adding these values together: \[ 1 + 1 + 4 + 1 + 1 = 8 \] ### Final Answer The value of \( \sum_{n=1}^{5} \left( x^n + \frac{1}{x^n} \right)^2 \) is \( \boxed{8} \).

To solve the problem, we need to find the value of the expression \( \sum_{n=1}^{5} \left( x^n + \frac{1}{x^n} \right)^2 \) given that \( x^2 - x + 1 = 0 \). ### Step 1: Find the roots of the quadratic equation The roots of the equation \( x^2 - x + 1 = 0 \) can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -1, c = 1 \). Thus, ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 6

    CAREER POINT|Exercise Part (C) (MATHS)|30 Videos
  • MOCK TEST 8

    CAREER POINT|Exercise PART (C ) - MATHS|30 Videos

Similar Questions

Explore conceptually related problems

If 1+x^(2)=sqrt(3)x, then sum_(n=1)^(24)(x^(n)-(1)/(x^(n))) is equal to

If x^(2)-x+1=0 then the value of sum_(n=1)^(5)[x^(n)+(1)/(x^(n))]^(2) is:

If (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r),(1 + (C_(1))/(C_(0))) (1 + (C_(2))/(C_(1)))...(1 + (C_(n))/(C_(n-1))) is equal to

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of

lim_ (n rarr oo) (1) / (2) tan ((x) / (2)) + (1) / (2 ^ (2)) tan ((x) / (2 ^ (2))). ... + (1) / (2 ^ (n)) tan ((x) / (2 ^ (n))) is equal to lim_ (n rarr oo) sum_ (n = 1) ^ (n) (1 ) / (2 ^ (n)) tan ((x) / (2 ^ (n)))

The average of n numbers x_(1), x_(2), ……. X_(n) is bar(x) . Then the value of sum_(i=1)^(n) (x_(1) - bar(x)) is equal to

lim_(ntooo) n^(2)(x^(1//n)-x^(1//(n+1))),xgt0, is equal to

lim_(xrarr1) (sum_(x=1)^(n)x^(r)-n)/(x-1) is equal to

CAREER POINT-MOCK TEST 7-PART (B) - CHEMISTRY
  1. A line throught the point A (2,0), which makes an angle of 30^(@) wit...

    Text Solution

    |

  2. If the equation of incircle of an equilateral triangle is x^2+y^2+4x-6...

    Text Solution

    |

  3. If a focal chord of y^2=4a x makes an angle alpha in [0,pi/4] with the...

    Text Solution

    |

  4. The number of irrational terms in the expansion of (2^(1//5) + 3^(1/...

    Text Solution

    |

  5. There are two circles whose equation are x^2+y^2=9 and x^2+y^2-8x-6y+n...

    Text Solution

    |

  6. Ther period of the function f(x) =(|sin x|-|cosx|)/(|sin x + cos x|...

    Text Solution

    |

  7. The lines 2x + y -1=0, ax+ 3y-3=0 and 3x + 2y -2=0 are concurrent for ...

    Text Solution

    |

  8. The coordinates of a point on the line (x-1)/(2)=(y+1)/(-3)=z at a...

    Text Solution

    |

  9. If a,b,c are in A.P., then 10^(ax+10),10^(bx+10),10^(ex +10) are in -

    Text Solution

    |

  10. The position vectors of the points A, B, and C are hati + hatj + h...

    Text Solution

    |

  11. Let hata,hatb and hatc be unit vectors and alpha, beta, and gamma the...

    Text Solution

    |

  12. (1 + sec 2 theta)(1 + sec 2^(2) theta)(1 + sec 2^(3) is equal is

    Text Solution

    |

  13. The mean of five observation is 4 and their variance is 5.2 . If th...

    Text Solution

    |

  14. h(x)=3f((x^2)/3)+f(3-x^2)AAx in (-3, 4) where f''(x)> 0 AA x in (-3,4)...

    Text Solution

    |

  15. If x = - 1 and x =2 are exterme points of the function y=a log x + b...

    Text Solution

    |

  16. adj- [{:( 1,0,2),(-1,1,-2),(0,2,1):}]=[{:(5,a,-2),(1,1,0),(-2,-2,b):}]...

    Text Solution

    |

  17. If (X) = f(X), f(0) = 1 then int (dx)/(f(x) + f(-x))=

    Text Solution

    |

  18. If f(x) is a polynomial satiysfying f(x) =(1)/(2) |{:(f(x),f((1)/(...

    Text Solution

    |

  19. The solution the differential equation "cos x sin y dx" + "sin x c...

    Text Solution

    |

  20. If x^(2) - x+ 1 =0, sum(n=1)^(5) (x^(n) +(1)/(x^(n)))^2 equals -

    Text Solution

    |