Home
Class 11
MATHS
prove that a^x - b^y = 0 where x = sqrt...

prove that `a^x - b^y = 0 `where x = `sqrt(log_a b )` and y = `sqrt(log_b a )` , a>0 , b>0 and a , b `!=` 1

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that a^x-b^y=0 where x=sqrt((log)_a b), y=sqrt((log)_b a), a >0, b >0 , a , b!=1

Prove that a^x-b^y=0 w h e r e x=" "sqrt(("log")_a b) & y=sqrt((log)_b a ), a >0, b >0 & a , b!=1

The value of a^x-b^y is (where x=sqrt(log_ab) and y=sqrt(log_ba),agt0,bgt0 and a,bne1 )

The value of a^x-b^y is (where x=sqrt(log_ab) and y=sqrt(log_ba),agt0,bgt0 and a,bne1 )

The value of a^x-b^y is (where x=sqrt(log_ab) and y=sqrt(log_ba),agt0,bgt0 and a,bne1 )

Prove that a^(x)-b^(y)=0 where x=sqrt(log_(a)(b)&y)=sqrt(log_(b)(a)),a>0,b>0&a,b!=1

Prove that a sqrt(log_(a)b)-b sqrt(log_(b)a)=0

If a lt 0, b gt 0 , then sqrt(a)sqrt(b) equal to