Home
Class 12
MATHS
int(e)^(e^(2))(log xdx)/((1+log x)^(2))=...

int_(e)^(e^(2))(log xdx)/((1+log x)^(2))=(e)/(6)(2e-3)

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(e )^(e^(2))log x dx =

int_(1)^(e^(2))(dx)/(x(1+log x)^(2))=

Evaluate :int_(e)^(e^(2)){(1)/(log x)-(1)/((log x)^(2))}dx

int_(1//e)^(e) (dx)/(x(log x)^(1//3))

int_(1//e)^(e) (dx)/(x(log x)^(1//3))

int_(e^(-1))^(e^(2))|(ln x)/(x)|dx

Show that int_(e)^(e^(2))(1)/(log x) dx = int_(1)^(2)(e^(x))/(x) dx

Evaluate: int_e^(e^2) (dx)/(x log x)

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx