Home
Class 12
MATHS
[" If "quad y=sqrt(x)sqrt(x)sqrt(x)sqrt(...

[" If "quad y=sqrt(x)sqrt(x)sqrt(x)sqrt(x)" - "],[x(dy)/(dx)=(y^(2))/(2-y log x)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(sqrt(x))^(sqrt(x)^(sqrt(x))...oo), show that (dy)/(dx)=(y^(2))/(x(2-y log x))

If (sqrt(x))^((sqrt(x))^((sqrt(x))^(...oo))) and x(dy)/(dx) =(f(y))/( 2-y log x) , then the value of f(y) is -

If y=sqrt(x)^(sqrt(x)^(sqrt(x)^dotoo)) , show that (dy)/(dx)=(y^2)/(x(2-ylogx)) .

If y=(sqrt(x))^((sqrt(x))^((sqrt(x))^(...oo) , show that, x (dy)/(dx)=(y^(2))/(2-y log x).

If y=(sqrt(x))^((sqrt(x))^((sqrt(x))^(...oo) , show that, x (dy)/(dx)=(y^(2))/(2-y log x).

If y= sqrt (x+ sqrt (x+ sqrt (x))),then (dy)/(dx) =

If y=sqrt(x+sqrt(x+sqrt(x.." to "oo)))," then "(dy)/(dx)=

y=sqrt(x+sqrt(x+sqrt(x)...)) find dy/dx

If y=sqrt(x+sqrt(x+sqrt(x.." to "oo)))," then "(dy)/(dx)=

If y=sqrt(x)^(sqrt(x)^(sqrtx...oo)) then prove that dy/dx=(y^2)/(x(2-y log x )).