Home
Class 10
MATHS
[" What is the distance between the "],[...

[" What is the distance between the "],[" points "P(m cos2 alpha,m sin2 alpha)" and "],[Q(m cos2 beta,m sin2 beta)?]

Promotional Banner

Similar Questions

Explore conceptually related problems

Find distance PQ between the points P ( a cos alpha, a sin alpha) and Q ( a cos beta, a sin beta) .

The distance between the points (a cos alpha, a sin alpha) and (a cos beta, a sin beta) is a) 2|sin((alpha-beta)/(2))| b) 2|a sin((alpha-beta)/(2))| c) 2|a cos((alpha-beta)/(2))| d) |a cos((alpha-beta)/(2))|

If sin beta is the G.M between sin alpha and cos alpha then (cos alpha - sin alpha)^(2) - 2 cos^(2) beta =

If cos alpha+cos beta=0=sin alpha+sin beta then cos2 alpha+cos2 beta=

If A=[(cos^(2) alpha, cos alpha sin alpha),(cos alpha sin alpha,sin^(2)alpha)] and B=[(cos^(2) beta, cos beta sin beta),(cos beta sin beta, sin^(2) beta)] are two matrices such that the product AB is the null matrix then alpha-beta is

(sinalpha cos beta+cos alpha sin beta)^2+(cos alpha cos beta-sin alpha sin beta)^2=1

If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2)alpha)] and B=[(cos^(2)betas,cos beta sin beta),(cos beta sin beta, sin^(2) beta)] are two matrices such that the product AB is null matrix, then alpha-beta is

If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2)alpha)] and B=[(cos^(2)betas,cos beta sin beta),(cos beta sin beta, sin^(2) beta)] are two matrices such that the product AB is null matrix, then alpha-beta is

If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2)alpha)] and B=[(cos^(2)betas,cos beta sin beta),(cos beta sin beta, sin^(2) beta)] are two matrices such that the product AB is null matrix, then alpha-beta is