Home
Class 12
MATHS
" The value of "lim(x rarr-1){sqrt(x)+sq...

" The value of "lim_(x rarr-1){sqrt(x)+sqrt(x+sqrt(x))-sqrt(x)}" equals "

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo){sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)}

The value of lim_(x to oo) {sqrt(x+ sqrt(x + sqrt(x))) - sqrt(x)} equals

lim_(x rarr oo)[sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)]

lim_(x rarr oo)(sqrt(x+sqrt(x-sqrt(x-sqrt(x))))) equals

lim_(x rarr oo)sqrt(x)(sqrt(x)-sqrt(x-a))

lim_(x rarr oo)sqrt(x+1)-sqrt(x)

lim_(x rarr oo) ( sqrt(x + sqrt(x + sqrt(x))) - sqrt(x)) is equal to :

lim_(x rarr1)(13sqrt(x)-7sqrt(x))/(5sqrt(x)-3sqrt(x))

lim_(x rarr 1)(1-sqrt(x))/(1 + sqrt(x))